题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5371
题意:求形如ABA(B与A对称0)的串的最大长度。
解法:先用manacher预处理出以每个点为中心的最长回文子串长度,枚举第二个部分即B的起点,再枚举串的长度,发现可行则更新答案(代码中非常清楚了)。可以用已经得到的ans剪枝。我求答案的时候用i++,j--枚举T了,改成i+=2,j-=2过了。。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
typedef long long LL;
struct FastIO
{
static const int S = 1310720;
int wpos;
char wbuf[S];
FastIO() : wpos(0) {}
inline int xchar()
{
static char buf[S];
static int len = 0, pos = 0;
if (pos == len)
pos = 0, len = fread(buf, 1, S, stdin);
if (pos == len) return -1;
return buf[pos ++];
}
inline int xuint()
{
int c = xchar(), x = 0;
while (c <= 32) c = xchar();
for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
return x;
}
inline int xint()
{
int s = 1, c = xchar(), x = 0;
while (c <= 32) c = xchar();
if (c == '-') s = -1, c = xchar();
for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
return x * s;
}
inline void xstring(char *s)
{
int c = xchar();
while (c <= 32) c = xchar();
for (; c > 32; c = xchar()) * s++ = c;
*s = 0;
}
inline void wchar(int x)
{
if (wpos == S) fwrite(wbuf, 1, S, stdout), wpos = 0;
wbuf[wpos ++] = x;
}
inline void wint(LL x)
{
if (x < 0) wchar('-'), x = -x;
char s[24];
int n = 0;
while (x || !n) s[n ++] = '0' + x % 10, x /= 10;
while (n--) wchar(s[n]);
}
inline void wstring(const char *s)
{
while (*s) wchar(*s++);
}
~FastIO()
{
if (wpos) fwrite(wbuf, 1, wpos, stdout), wpos = 0;
}
} io;
int s[maxn], str[maxn];
int len1,len2,p[maxn],ans;
void init(){
str[0]=-1;
str[1]=-1;
for(int i=0; i<len1; i++){
str[i*2+2]=s[i];
str[i*2+3]=-1;
}
len2=len1*2+2;
str[len2]=-1;
}
void manacher(){
int id=0,mx=0;
for(int i=1; i<len2; i++){
if(mx>i) p[i]=min(p[2*id-i],mx-i);
else p[i]=1;
for(;str[i+p[i]]==str[i-p[i]];p[i]++);
if(p[i]+i>mx){
mx=p[i]+i;
id=i;
}
}
}
int main()
{
int T,n,ks=0;
T = io.xint();
while(T--){
n = io.xint();
for(int i=0; i<n; i++){
s[i] = io.xint();
}
len1=n;
init();
manacher();
ans=0;
for(int i=1; i<len2; i+=2){
for(int j=p[i]+i-1; j-i>ans; j-=2){
if(j-i+1<=p[j]){
ans = max(ans, j-i);
break;
}
}
}
printf("Case #%d: %d\n", ++ks, ans/2*3);
}
return 0;
}