题意:给你N个数字,每次询问一个区间[ l , r ],输出区间内某两个数的最大公约数。
思路:记录下询问的区间,排序,这里我是按l从大到小排的,方法很多种。
从后开始往前扫,从n - 1,每次扫到一个a[i],求出他所有的约数。
这里用一个数组vis记录这个约数上次出现的位置,这样就可以保证每次插入这个约数时,这个区间内至少是有两个这个约数的,也就是他至少是两个数的公约数。
然后查询这个区间内的最大值。
理解之后其实蛮水的。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1<<28
#define LL(x) ( x << 1 )
#define RR(x) ( x << 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std;
inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
inline void OT(int a) {
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
#define N 50005
int n , m ;
int a[N] ;
int c[N] ;
int ans[N] ;
struct QU {
int s , e , id ;
} Q[N] ;
bool cmp(const QU& aa ,const QU& bb) {
return aa.s > bb.s ;
}
int vis[N] ;
void update(int pos ,int num) {
for (int i = pos ; i <= n ; i += i & (-i)){
if(c[i] < num)c[i] = num ;
}
}
int sum(int pos) {
int ans = 0 ;
for (int i = pos ; i >= 1 ; i -= i & (-i)){
if(ans < c[i])ans = c[i] ;
}
return ans ;
}
int main() {
int T ;
cin >> T ;
while(T -- ) {
cin >> n ;
mem(vis, 0) ;
mem(c ,0) ;
REP(i , 1 , n ) {
RD(a[i]) ;
}
cin >> m ;
REP(i , 0 , m - 1) {
RD(Q[i].s) ;
RD(Q[i].e) ;
Q[i].id = i ;
}
sort(Q, Q + m , cmp) ;
int j = 0 ;
int i = n ;
while(1) {
while(i > 0 && Q[j].s <= i) {
for (int j = 1 ; j * j <= a[i] ; j ++ ) {
if(a[i] % j)continue ;
int k = a[i] / j ;
if(vis[j])update(vis[j] , j) ;//vis数组表示这个约数j上次出现的位置,所以上上个位置插入j,因为上次出现过了,所以约数j的数量肯定大于等于2
if(k != j && vis[k]) {
update(vis[k] , k) ;
}
vis[j] = i ;
vis[k] = i ;
}
i --;
}
while(Q[j].s > i && j < m) {
ans[Q[j].id] = sum(Q[j].e) ;
j ++ ;
}
if(j >= m)break ;
}
REP(i , 0 , m - 1 ) {
printf("%d\n",ans[i]) ;
}
}
return 0 ;
}