POJ 2955 括号匹配,区间DP

题意:给你一些括号,问匹配规则成立的括号的个数。

思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立。

我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最少数量,那么设原来括号的数量为l , 添加了l' 。

那么其实原来括号匹配成功的括号数就是((l + l') / 2 - l') * 2。

#define N 105
char a[N] ;
int dp[N][N] ;
int f[N][N] ;
int check(int i ,int j) {
    if(a[i] == '[' && a[j] == ']')return 1 ;
    if(a[i] == '(' && a[j] == ')')return 1 ;
    return 0 ;
}
void init() {
    mem(dp ,0) ;
    mem(f ,0) ;
}
int main() {
    while(cin >> a) {
        if(strcmp(a , "end") == 0)break ;
        init() ;
        int l = strlen(a) ;
        for (int i = 0 ; i < l ; i ++ ) {
            dp[i][i] = 1 ;
            dp[i + 1][i] = 0 ;
        }
        for (int i = 1 ; i <= l ; i ++ ) {
            for (int j = 0 ; j + i - 1 < l ; j ++ ) {
                int s = j ;
                int e = j + i - 1 ;
                dp[s][e] = 0 ;
                if(check(s ,e))dp[s][e] = min(dp[s][e] , dp[s + 1][e - 1]) ;
                if(a[s] == '[' || a[s] == '(')dp[s][e] = min(dp[s][e] , dp[s + 1][e] + 1) ;
                if(a[e] == ']' || a[e] == ')')dp[s][e] = min(dp[s][e] , dp[s][e - 1] + 1) ;
                for (int k = s ; k < e ; k ++ ){
                    dp[s][e] = min(dp[s][e] , dp[s][k] + dp[k + 1][e]) ;
                }
            }
        }
        cout << ((l + dp[0][l - 1]) / 2 - dp[0][l - 1]) * 2 << endl;
    }
    return 0 ;
}

当然,按照思路来写应该是这样的区间dp。

#define N 105
int dp[N][N] ;
char a[N] ;
bool check(int i ,int j){
    if(a[i] == '[' && a[j] == ']')return 1 ;
    if(a[i] == '(' && a[j] == ')')return 1 ;
    return 0 ;
}
int main() {
    int T ;
    while(cin >> a){
        if(strcmp(a ,"end") == 0)break ;
        int l = strlen(a) ;
        mem(dp , 0) ;
        for (int i = 2 ; i <= l ; i ++ ){
            for (int j = 0 ; j + i - 1 < l ; j ++ ){
                int s = j ;
                int e = j + i - 1 ;
                if(check(s ,e ))dp[s][e] = max(dp[s][e] , dp[s + 1][e - 1] + 2) ;
                for (int k = s ; k < e ; k ++ ){
                    dp[s][e] = max(dp[s][e] , dp[s][k] + dp[k + 1][e]) ;
                }
            }
        }
        cout << dp[0][l - 1] << endl;
    }
    return 0 ;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值