希尔排序概况
希尔排序(Shell's Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。该方法因D.L.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
-
插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
-
但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。
算法思路
先取一个小于 n 的整数 作为第一个增量,把文件的全部记录分组。所有距离为 的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量 重复上述的分组和排序,直至所取的增量,即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
图解算法
假设,我们有一个数列,初始状态为,一共 8 个元素。
第一轮
我们按下标相隔距离为 4 进行分组,这样a[0]与a[4]是一组、a[1]与a[5]是一组、...。如下图所示。
每个分组进行插入排序后,各个分组就变成了有序的,注意整体不一定有序。如下图所示。
第二轮
小增量为上个增量的一半 2,继续划分分组。此时,每个分组元素个数多了,但是,数组变的部分有序了,插入排序效率同样比高。此时的分组情况如下图所示。
对每个分组进行插入排序,使其每个分组各自有序。如下图所示。
第三轮
最后设置增量为上一个增量的一半 1,则整个数组被分为一组,此时,整个数组已经接近有序了,插入排序效率高。如下图所示。
再对分组进行插入排序,使其每个分组各自有序。这样排序完成。
动画展示
我们借用五分钟学算法的gif动图,感谢五分钟学算法。
算法性能
时间复杂度
希尔排序的复杂度和增量序列是相关的。为了保证分组粗调没有盲区,每一轮的增量需要彼此“互质”,也就是没有除1之外的公约数。
这种序列并不是很好的增量序列,使用这个增量序列的时间复杂度(最坏情形)是。
Hibbard 提出了另一个增量序列,通项公式 ,这种序列的时间复杂度(最坏情形)为。
Sedgewick 提出了几种增量序列,其最坏情形运行时间为,其中最好的一个序列是,通项公式 或者 。
所以我们认为希尔排序的平均时间复杂度为。
空间复杂度
由于希尔排序使用了插入排序的方法,所以空间复杂度和插入排序相同,。
稳定性
不稳定。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
代码实现
C和C++
void shellSort(int arr[], int len) {
//计算的序列为1, 4, 13, 40, 121, 364, 1093...
int gap = 1;
while (gap < len/3) {
gap = 3*gap+1;
}
while (gap >= 1) {
for (int i=gap; i<len; i++) {
//对arr[i], arr[i-h], arr[i-2h], ... 使用插入排序
int e = arr[i];
int j;
for (j=i; j>=gap; e<arr[j-gap]; j-=gap) {
arr[j] = arr[j-gap];
}
arr[j] = e;
}
gap /= 3;
}
}
Java
public class ShellSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int gap = 1;
while (gap < arr.length/3) {
gap = gap * 3 + 1;
}
while (gap > 0) {
for (int i = gap; i < arr.length; i++) {
int tmp = arr[i];
int j = i - gap;
while (j >= 0 && arr[j] > tmp) {
arr[j + gap] = arr[j];
j -= gap;
}
arr[j + gap] = tmp;
}
gap = (int) Math.floor(gap / 3);
}
return arr;
}
}
Python
def shellSort(arr):
import math
gap=1
while(gap < len(arr)/3):
gap = gap*3+1
while gap > 0:
for i in range(gap,len(arr)):
temp = arr[i]
j = i-gap
while j >=0 and arr[j] > temp:
arr[j+gap]=arr[j]
j-=gap
arr[j+gap] = temp
gap = math.floor(gap/3)
return arr