洛谷题解——P1162:填涂颜色

18 篇文章 3 订阅
17 篇文章 0 订阅

题目相关

题目链接

洛谷,https://www.luogu.com.cn/problem/P1162

题目描述

由数字 0 组成的方阵中,有一任意形状闭合圈,闭合圈由数字 1 构成,围圈时只走上下左右 4 个方向。现要求把闭合圈内的所有空间都填写成 2。

输入格式

每组测试数据第一行一个整数 n。

接下来 n 行,由 0 和 1 组成的 n×n 的方阵。

方阵内只有一个闭合圈,圈内至少有一个 0。

输出格式

已经填好数字 2 的完整方阵。

输入样例

6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

输出样例

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

数据范围

1 ≤ n ≤ 30

题目分析

题意分析

根据题目要求,找出内圈的 0 ,并将数据变为 2。

样例数据分析

原始数据

由于需要遍历整个矩阵,第一反应就是可以考虑使用 BFS。下面我们使用输入样例来分析数据的变化过程。输入的数据为:

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

可以看出,样例数据有 0 和 1,其中 0 又分为外圈 0 和内圈 0,按照要求我们需要找出内圈 0,并将其变为 2。内圈 0 从哪里开始,我们不知道,所以直接找内圈 0 不容易。换一个思路,我们可以找出外圈 0,并将其标注出来,这样数据 0 就可以分为两类,一类是标记过的 0,一类是没有标记过的 0。自然标记过的 0 就是外圈的,输出时候保持不变即可;没有标记过的 0 就是内圈的,输出的时候变为 2,这样就可以达到题目要求。

新的问题出来了,使用 BFS 进行遍历的时候,需要提供一个开始坐标,那么本题的开始坐标是哪个?有写人马上反应过来,简单啊,在读入数据的时候,出现的第一个 0 将其坐标记录下来,这样不就知道了。

但是有一个小细节,题目可没有说外圈的 0 是连续的。什么意思?我们构造一个样例数据。如下所示:

0 1 0 1 0 1
1 1 1 1 1 0
0 1 0 0 1 1
1 1 0 0 1 0
0 1 1 1 1 1
1 0 1 0 1 0

如上所示的样例数据,外圈有好多 0 ,但是它们不是联通的。该怎么办?

开动脑筋想想,其实也很简单啊,我们人为的在最外层加上一圈 0,这样所有的外圈 0 不就是联通了。如上所示的样例数据,经过这个方法处理后,是不是就变成如下的数据:

0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 1 1 1 1 0 0
0 0 1 0 0 1 1 0
0 1 1 0 0 1 0 0
0 0 1 1 1 1 1 0
0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0

是不是这样?附加上一圈 0 后,所有的外圈 0 就变成联通了。

新的问题来了,代码如何实现附件上一圈 0 呢?很简单啊。定义的时候将二维数组初始化为零,从下标 1 开始读入数据,这样就达到了这个目的。

处理后数据

按照上面的方法,在最外层增加一圈 0 后,输入数据变为:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 0
0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0

然后使用 BFS 进行标记,标记的矩阵如下所示:

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1
1 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1

注意,内圈的 0 是不会遍历到的。

这样,我们有两个矩阵,一个原数据矩阵,一个是 BFS 遍历后标记矩阵。输出的时候,我们遍历这两个矩阵,通过比对数据,即可得到题目输出。

编程思路

1、读入数据。

2、从 0,0 开始使用 BFS 遍历矩阵

3、比对 vis 矩阵和原数据矩阵输出结果。当 vis[x][y] 为 1,同时 data[x][y] 为 0,当前位置输出 0;当 vis[x][y] 为 0,同时 data[x][y] 为 1,当前位置输出 1;当 vis[x][y] 为 0,同时 data[x][y] 为 0,当前位置输出 2。

AC 参考代码

#include <iostream>
#include <queue>
using namespace std;

const int MAXN = 34;

typedef struct _MAZE {
    int n;//矩阵长宽
    int x1, y1;//开始位置
    int data[MAXN][MAXN];
    bool vis[MAXN][MAXN];
} MAZE;

MAZE maze = {};

typedef struct _POS {
    int x,y;
} POS;
const POS moves[] = {{0,-1},{0,1},{1,0},{-1,0}};

void bfs(MAZE &maze) {
    POS cur = {maze.x1, maze.y1};
    POS next;

    queue<POS> q;
    q.push(cur);
    maze.vis[cur.x][cur.y] = true;

    while (false==q.empty()) {
        cur = q.front();
        q.pop();

        for (int i=0; i<4; i++) {
            next.x = cur.x+moves[i].x;
            next.y = cur.y+moves[i].y;

            //合法性判断
            if (next.x>=0&&next.x<=maze.n+1&&next.y>=0&&next.y<=maze.n+1&&0==maze.data[next.x][next.y]&&false==maze.vis[next.x][next.y]) {
                maze.vis[next.x][next.y] = true;
                q.push(next);
            }
        }
    }
}

int main() {
    cin>>maze.n;
    for (int i=1; i<=maze.n; i++) {
        for (int j=1; j<=maze.n; j++) {
            cin>>maze.data[i][j];
        }
    }

    bfs(maze);

    for (int i=1; i<=maze.n; i++) {
        for (int j=1; j<=maze.n; j++) {
            if (true==maze.vis[i][j] && 0==maze.data[i][j]) {
                cout << "0 ";
            } else if (false==maze.vis[i][j] && 1==maze.data[i][j]) {
                cout << "1 ";
            } else if (false==maze.vis[i][j] && 0==maze.data[i][j]) {
                cout << "2 ";
            }
        }
        cout << endl;
    }

    return 0;
}

注意:由于扩大了一圈,在 BFS 遍历的时候,终点应该是 n+1,而不是 n。比较搞笑的事情,我第一次提交代码的时候调到这个坑里了。

在给定的方阵,我们需要找到闭合起始位置。然后,可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来将闭合内的所有位置填写为2。下面是使用深度优先搜索(DFS)的C++代码实现: ```cpp #include <iostream> const int MAX_N = 30; int n; int matrix[MAX_N][MAX_N]; bool visited[MAX_N][MAX_N]; // 判断坐标是否在方阵内 bool isValid(int x, int y) { return (x >= 0 && x < n && y >= 0 && y < n); } // 使用深度优先搜索将闭合内的位置填写为2 void dfs(int x, int y) { visited[x][y] = true; matrix[x][y] = 2; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; for (int i = 0; i < 4; i++) { int nx = x + dx[i]; int ny = y + dy[i]; if (isValid(nx, ny) && matrix[nx][ny] == 1 && !visited[nx][ny]) { dfs(nx, ny); } } } int main() { std::cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { std::cin >> matrix[i][j]; } } // 找到闭合的起始位置 int startX = -1, startY = -1; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (matrix[i][j] == 0) { startX = i; startY = j; break; } } if (startX != -1 && startY != -1) { break; } } // 使用深度优先搜索将闭合内的位置填写为2 dfs(startX, startY); // 输出填好数字后的矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { std::cout << matrix[i][j] << " "; } std::cout << std::endl; } return 0; } ``` 你可以将输入数据放在标准输入,然后运行程序,得到输出结果。输出表示填好数字后的矩阵。希望对你有帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值