定义
Central to all these differential operations is the vector operator
∇
\nabla
∇, which is called del (or sometimes nabla) and in Cartesian coordinates is defined by
∇
≡
i
∂
∂
x
+
j
∂
∂
y
+
k
∂
∂
z
.
\nabla\equiv \boldsymbol{i} \frac{\partial}{\partial x}+\boldsymbol{j}\frac{\partial}{\partial y}+\boldsymbol{k}\frac{\partial}{\partial z}.
∇≡i∂x∂+j∂y∂+k∂z∂.
Vector operators acting on sums and products
1、
∇
(
ϕ
+
ψ
)
=
∇
ϕ
+
∇
ψ
\nabla(\phi+\psi)=\nabla\phi+\nabla\psi
∇(ϕ+ψ)=∇ϕ+∇ψ;
2、
∇
⋅
(
a
+
b
)
=
∇
⋅
a
+
∇
⋅
b
\nabla \cdot (\boldsymbol{a}+\boldsymbol{b})=\nabla \cdot \boldsymbol{a}+\nabla \cdot \boldsymbol{b}
∇⋅(a+b)=∇⋅a+∇⋅b;
3、
∇
×
(
a
+
b
)
=
∇
×
a
+
∇
×
b
\nabla \times (\boldsymbol{a}+\boldsymbol{b})=\nabla \times \boldsymbol{a}+\nabla \times \boldsymbol{b}
∇×(a+b)=∇×a+∇×b;
4、
∇
(
ϕ
ψ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
\nabla(\phi\psi)=\phi\nabla\psi+\psi\nabla\phi
∇(ϕψ)=ϕ∇ψ+ψ∇ϕ;
5、
∇
(
a
⋅
b
)
=
a
×
(
∇
×
b
)
+
b
×
(
∇
×
a
)
+
(
a
⋅
∇
)
b
+
(
b
⋅
∇
)
a
\nabla (\boldsymbol{a} \cdot \boldsymbol{b})=\boldsymbol{a} \times (\nabla \times \boldsymbol{b})+\boldsymbol{b} \times (\nabla \times \boldsymbol{a})+(\boldsymbol{a} \cdot\nabla)\boldsymbol{b}+(\boldsymbol{b} \cdot\nabla)\boldsymbol{a}
∇(a⋅b)=a×(∇×b)+b×(∇×a)+(a⋅∇)b+(b⋅∇)a;
6、
∇
⋅
(
ϕ
a
)
=
ϕ
∇
⋅
a
+
a
⋅
∇
ϕ
\nabla \cdot (\phi\boldsymbol{a})=\phi \nabla \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \nabla \phi
∇⋅(ϕa)=ϕ∇⋅a+a⋅∇ϕ;
7、
∇
⋅
(
a
×
b
)
=
b
⋅
(
∇
×
a
)
−
a
⋅
(
∇
×
b
)
\nabla\cdot(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{b}\cdot(\nabla \times\boldsymbol{a} ) -\boldsymbol{a}\cdot(\nabla \times\boldsymbol{b})
∇⋅(a×b)=b⋅(∇×a)−a⋅(∇×b);
8、
∇
×
(
ϕ
a
)
=
∇
ϕ
×
a
+
ϕ
∇
×
a
\nabla\times(\phi\boldsymbol{a})=\nabla\phi\times\boldsymbol{a}+\phi\nabla\times\boldsymbol{a}
∇×(ϕa)=∇ϕ×a+ϕ∇×a;
9、
∇
×
(
a
×
b
)
=
a
(
∇
⋅
b
)
−
b
(
∇
⋅
a
)
+
(
b
⋅
∇
)
a
−
(
a
⋅
∇
)
b
\nabla \times (\boldsymbol{a}\times\boldsymbol{b})=\boldsymbol{a}(\nabla\cdot\boldsymbol{b})-\boldsymbol{b}(\nabla\cdot\boldsymbol{a})+(\boldsymbol{b}\cdot\nabla)\boldsymbol{a}-(\boldsymbol{a}\cdot\nabla)\boldsymbol{b}
∇×(a×b)=a(∇⋅b)−b(∇⋅a)+(b⋅∇)a−(a⋅∇)b;
where
ϕ
\phi
ϕ and
ψ
\psi
ψ are scalar fields, and
a
\boldsymbol{a}
a and
b
\boldsymbol{b}
b are vector fields.