Vector operators acting on sums and products

这篇博客详细介绍了向量算子∇,也称为梯度,及其在笛卡尔坐标系中的定义。文章列举了∇在不同数学运算中的行为,包括加法、点乘、叉乘等,并给出了相应的运算规则,如∇(ϕ+ψ)=∇ϕ+∇ψ,∇×(a+b)=∇×a+∇×b等,这些规则对于理解矢量场的性质和计算至关重要。
摘要由CSDN通过智能技术生成

定义

Central to all these differential operations is the vector operator ∇ \nabla , which is called del (or sometimes nabla) and in Cartesian coordinates is defined by
∇ ≡ i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z . \nabla\equiv \boldsymbol{i} \frac{\partial}{\partial x}+\boldsymbol{j}\frac{\partial}{\partial y}+\boldsymbol{k}\frac{\partial}{\partial z}. ix+jy+kz.

Vector operators acting on sums and products

1、 ∇ ( ϕ + ψ ) = ∇ ϕ + ∇ ψ \nabla(\phi+\psi)=\nabla\phi+\nabla\psi (ϕ+ψ)=ϕ+ψ;
2、 ∇ ⋅ ( a + b ) = ∇ ⋅ a + ∇ ⋅ b \nabla \cdot (\boldsymbol{a}+\boldsymbol{b})=\nabla \cdot \boldsymbol{a}+\nabla \cdot \boldsymbol{b} (a+b)=a+b;
3、 ∇ × ( a + b ) = ∇ × a + ∇ × b \nabla \times (\boldsymbol{a}+\boldsymbol{b})=\nabla \times \boldsymbol{a}+\nabla \times \boldsymbol{b} ×(a+b)=×a+×b;
4、 ∇ ( ϕ ψ ) = ϕ ∇ ψ + ψ ∇ ϕ \nabla(\phi\psi)=\phi\nabla\psi+\psi\nabla\phi (ϕψ)=ϕψ+ψϕ;
5、 ∇ ( a ⋅ b ) = a × ( ∇ × b ) + b × ( ∇ × a ) + ( a ⋅ ∇ ) b + ( b ⋅ ∇ ) a \nabla (\boldsymbol{a} \cdot \boldsymbol{b})=\boldsymbol{a} \times (\nabla \times \boldsymbol{b})+\boldsymbol{b} \times (\nabla \times \boldsymbol{a})+(\boldsymbol{a} \cdot\nabla)\boldsymbol{b}+(\boldsymbol{b} \cdot\nabla)\boldsymbol{a} (ab)=a×(×b)+b×(×a)+(a)b+(b)a;
6、 ∇ ⋅ ( ϕ a ) = ϕ ∇ ⋅ a + a ⋅ ∇ ϕ \nabla \cdot (\phi\boldsymbol{a})=\phi \nabla \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \nabla \phi (ϕa)=ϕa+aϕ;
7、 ∇ ⋅ ( a × b ) = b ⋅ ( ∇ × a ) − a ⋅ ( ∇ × b ) \nabla\cdot(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{b}\cdot(\nabla \times\boldsymbol{a} ) -\boldsymbol{a}\cdot(\nabla \times\boldsymbol{b}) (a×b)=b(×a)a(×b);
8、 ∇ × ( ϕ a ) = ∇ ϕ × a + ϕ ∇ × a \nabla\times(\phi\boldsymbol{a})=\nabla\phi\times\boldsymbol{a}+\phi\nabla\times\boldsymbol{a} ×(ϕa)=ϕ×a+ϕ×a;
9、 ∇ × ( a × b ) = a ( ∇ ⋅ b ) − b ( ∇ ⋅ a ) + ( b ⋅ ∇ ) a − ( a ⋅ ∇ ) b \nabla \times (\boldsymbol{a}\times\boldsymbol{b})=\boldsymbol{a}(\nabla\cdot\boldsymbol{b})-\boldsymbol{b}(\nabla\cdot\boldsymbol{a})+(\boldsymbol{b}\cdot\nabla)\boldsymbol{a}-(\boldsymbol{a}\cdot\nabla)\boldsymbol{b} ×(a×b)=a(b)b(a)+(b)a(a)b;
where ϕ \phi ϕ and ψ \psi ψ are scalar fields, and a \boldsymbol{a} a and b \boldsymbol{b} b are vector fields.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值