从欧几里得到扩展欧几里得到裴蜀定理再到扩展中国剩余定理

欧几里得算法

欧几里得算法,又称辗转相除法。用于计算两个整数 a , b a,b a,b 的最大公约数。
基本算法思路(来自离散数学)为:
a = b q + r a=bq+r a=bq+r,其中 a , b , q , r a,b,q,r a,b,q,r都是整数。则 gcd ( a , b ) = gcd ( b , r ) \text{gcd}(a,b)=\text{gcd}(b,r) gcd(a,b)=gcd(b,r),即 gcd ( a , b ) = gcd ( b , a % b ) \text{gcd}(a,b)=\text{gcd}(b,a\%b) gcd(a,b)=gcd(b,a%b)

Theorem 1

a , b , c a,b,c a,b,c 都是整数,则:

  1. a ∣ b a|b ab a ∣ c a|c ac,则 a ∣ ( b + c ) a|(b+c) a(b+c)
  2. a ∣ b a|b ab,那么对于所有整数 c c c 都有 a ∣ b c a|bc abc
  3. a ∣ b ,   b ∣ c a|b,\ b|c ab, bc,则 a ∣ c a|c ac

证明:假定 a ∣ b a|b ab a ∣ c a|c ac,从整除性定义可知有整数 s , t s,t s,t,使得 b = a s ,   c = a t b=as,\ c=at b=as, c=at
因此, b + c = a s + a t = a ( s + t ) b+c=as+at=a(s+t) b+c=as+at=a(s+t)
于是 a a a 整出 b + c b+c b+c,这样,我们就证明了定理 1 的第(1)部分。

Lemma 1

如果 a , b , c a,b,c a,b,c 是整数,使得 a ∣ b a|b ab a ∣ c a|c ac,那么只要 m , n m,n m,n 是整数,就有 a ∣ ( m b + n c ) a|(mb+nc) a(mb+nc)

证明:根据定义 1 的第(2)部分,只要 m , n m,n m,n是整数,就有 a ∣ m b a|mb amb a ∣ n c a|nc anc。根据定理 1 中的(1),有 a ∣ ( m b + n c ) a|(mb+nc) a(mb+nc)

辗转相除法

证明:如果能证明 a , b a,b a,b 的最大公约数和 b , r b,r b,r 的公约数相同,也就证明了 gcd ( a , b ) = gcd ( b , r ) \text{gcd}(a,b)=\text{gcd}(b,r) gcd(a,b)=gcd(b,r),因为这两对整数必定有相同的最大公约数。
现在假定 d d d 整除 b b b r r r,于是 d d d 也整除 a − b q = r a-bq=r abq=r(根据离散数学2.4定理1),因此 a a a b b b 的任何公约数也是 b b b r r r 的公约数。
类似地,假定 d d d 整除 b b b r r r,于是 d d d 也整除 b q + r = a bq+r=a bq+r=a,因此 b b b r r r 的任何公约数也是 a a a b b b 的公约数。
于是 gcd ( a , b ) = gcd ( b , r ) \text{gcd}(a,b)=\text{gcd}(b,r) gcd(a,b)=gcd(b,r)
假定 a a a b b b 为正整数, a ≥ b a \ge b ab。令 r 0 = a r_0=a r0=a r 1 = b r_1=b r1=b。若辗转应用整除算法,得
r 0 = r 1 q 1 + r 2      0 ≤ r 2 < r 1 r 1 = r 2 q 2 + r 3      0 ≤ r 3 < r 2 ⋮ r n − 2 = r n − 1 q n − 1 + r n      0 ≤ r n < r n − 1 r n − 1 = r n q n      r_0=r_1q_1+r_2\ \ \ \ 0 \le r_2 < r_1\\ r_1=r_2q_2+r_3\ \ \ \ 0 \le r_3 < r_2\\ \vdots\\ r_{n-2}=r_{n-1}q_{n-1}+r_n\ \ \ \ 0 \le r_n < r_{n-1}\\ r_{n-1}=r_nq_n\ \ \ \ r0=r1q1+r2    0r2<r1r1=r2q2+r3    0r3<r2rn2=rn1qn1+rn    0rn<rn1rn1=rnqn    
最终在辗转相除序列中会出现余数为 0 0 0,因为在余数序列 a = r 0 > r 1 > r 2 > ⋯ ≥ 0 a=r_0>r_1>r_2>\cdots \ge 0 a=r0>r1>r2>0 中至多包含 a a a 项,从引理 1 1 1 知道
gcd ( a , b ) = gcd ( r 0 , r 1 ) = gcd ( r 1 , r 2 ) = ⋯ = gcd ( r n − 2 , r n − 1 ) = gcd ( r n − 1 , r n ) = gcd ( r n , 0 ) = r n \text{gcd}(a,b)=\text{gcd}(r_0,r_1)=\text{gcd}(r_1,r_2)=\cdots \\ =\text{gcd}(r_{n-2},r_{n-1})=\text{gcd}(r_{n-1},r_n)=\text{gcd}(r_n,0)=r_n gcd(a,b)=gcd(r0,r1)=gcd(r1,r2)==gcd(rn2,rn1)=gcd(rn1,rn)=gcd(rn,0)=rn
因此,最大公约数是除法序列中最后一个非零余数。

应用

现在,我们知道了 a , b a,b a,b 的最大公约是 d d d,那么,我们一定能够找到这样的 x , y x,y x,y,使得: a x + b y = d ax+by=d ax+by=d,这是一个不定方程,也就是一种丢番图方程,该方程有任意组解。
但是只要我们找到一组特殊的解,记为 x 0 , y 0 x_0,y_0 x0,y0,那么,我们就可以用这组解表示出整个不定方程的通解,对应的通解为:
{ x = x 0 + ( b / d ) ∗ k y = y 0 − ( a / d ) ∗ k   k ∈ [ − ∞ , + ∞ ] \begin{cases} x=x_0+(b/d)*k\\ y=y_0-(a/d)*k \end{cases}\ k \in [-\infty, +\infty] {x=x0+(b/d)ky=y0(a/d)k k[,+]

A = a d ,   B = b d A=\frac{a}{d},\ B=\frac{b}{d} A=da, B=db,那么 A , B A,B A,B 一定是互质的,这样最小系数不就是这两个。

于是,我们就从欧几里得算法过度到扩展欧几里得算法。

扩展欧几里得算法

扩欧就是求 a × x + b × y = gcd ( a , b ) a \times x+b \times y=\text{gcd}(a,b) a×x+b×y=gcd(a,b) 这个方程的解,其实也就是同余方程 a x ≡ gcd ( a , b )   (   m o d     b ) ax \equiv \text{gcd}(a,b)\ (\bmod\ b) axgcd(a,b) (mod b) 的解。
这里,我们主要是想计算出 x x x 的值, y y y 是一个辅助解。

简单理解

b = 0 b=0 b=0

gcd ( a , b ) = gcd ( a , 0 ) = a \text{gcd}(a,b)=\text{gcd}(a,0)=a gcd(a,b)=gcd(a,0)=a
∴ a × x + b × y = gcd ( a , b ) → a × x = a \therefore a \times x+b\times y=\text{gcd}(a,b) \to a \times x=a a×x+b×y=gcd(a,b)a×x=a
我们取一组最小的正整数解,即 x = 1 ,   y = 0 x=1,\ y=0 x=1, y=0

b ≠ 0 b \neq 0 b=0

根据最大公约数性质 gcd ( a , b ) = gcd ( b , a   m o d   b ) \text{gcd}(a,b)=\text{gcd}(b, a \bmod b) gcd(a,b)=gcd(b,amodb)
这样我们构造出 b x 1 + ( a   m o d   b ) y 1 = gcd ( b , ( a   m o d   b ) ) bx_1+(a \bmod b)y_1 =\text{gcd}(b,(a \bmod b)) bx1+(amodb)y1=gcd(b,(amodb)),可得
b x 1 + ( a   m o d   b ) y 1 = a x + b y bx_1+(a \bmod b)y_1=ax+by bx1+(amodb)y1=ax+by
这里我们可以将 a   m o d   b a \bmod b amodb 变成 a − b ∗ ( a / b ) a-b*(a/b) ab(a/b),注意这里的 / / / 是整除的意思,带入上式,可得
b x 1 + ( a − b ∗ ( a / b ) ) y 1 = a x + b y bx_1+(a-b*(a/b))y_1=ax+by bx1+(ab(a/b))y1=ax+by
b x 1 + a y 1 − b ∗ ( a / b ) y 1 = a x + b y bx_1+ay_1-b*(a/b)y_1=ax+by bx1+ay1b(a/b)y1=ax+by
a y 1 + b ( x 1 − ( a / b ) y 1 ) = a x + b y ay_1+b(x_1-(a/b)y_1)=ax+by ay1+b(x1(a/b)y1)=ax+by
这样,我们就求出了一组解,即为: x = y 1 ,   y = x 1 − ( a / b ) y 2 x=y_1,\ y=x_1-(a/b)y_2 x=y1, y=x1(a/b)y2
我们就这样继续卷啊。最终将 b b b 卷为 0 0 0
但是,我们求出的解 x x x,这个 x x x 不一定是最小正整数解。显然 x x x 加上或者减去 b b b 是没有任何影响的,因此 x = ( x % b + b ) % b x=(x\% b+b) \% b x=(x%b+b)%b 就是满足同余方程的最小正整数解。

模板代码

//求解ax+by=gcd(a,b)
//返回值为 gcd(a,b)
LL exgcd(LL a, LL b, LL &x, LL &y) {
    //出口
    if (b==0) {
        x=1;y=0;
        return a;
    }
    LL d=exgcd(b, a%b, y, x);
    y=y-a/b*x;
    return d;
}

裴蜀定理

裴蜀定理,又称贝祖定理(Bézout’s lemma)。是一个关于最大公约数的定理。
a ,   b a,\ b a, b 是不全为零的整数,则存在整数 x ,   y x,\ y x, y, 使得 a x + b y = c ax+by=c ax+by=c
也就是有解的充要条件是 g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c
学渣,我们就不证明这个了。

OI运用

和扩欧相比,裴蜀定理增加了对方程是否有解的判断。即 g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c
我们在 OI 中,一般都是使用 g c d gcd gcd 算法来搞。

同余方程

概念

方程定义为 a x ≡ b   (   m o d     m ) ax \equiv b\ (\bmod\ m) axb (mod m),也就是 a x % m ≡ b % m ax \% m \equiv b \% m ax%mb%m

同余方程变扩展欧几里得

∵ a x ≡ b   (   m o d     m ) \because ax \equiv b\ (\bmod\ m) axb (mod m)
∴ m ∣ ( a x − b ) \therefore m|(ax-b) m(axb)
∴ m × k = a × x − b    ∀ k ∈ [ − ∞ , + ∞ ] \therefore m \times k = a \times x-b\ \ \forall k \in [-\infty,+\infty] m×k=a×xb  k[,+]
∴ a × x − m × k = b \therefore a \times x - m \times k=b a×xm×k=b
∴ a × x + m × y = b \therefore a \times x + m \times y=b a×x+m×y=b
用中文来说因为 a x ax ax b b b m m m 是同余,也就意味着 a x − b ax-b axb m m m 的整数倍,也就是可以整除。
根据裴蜀定理,我们知道 a x + m y = b ax+my=b ax+my=b 有解的充要条件为 gcd ( a , m ) ∣ b \text{gcd}(a,m)|b gcd(a,m)b
该方程的通解形式为 x = b d x 0 + m d k ,     d = gcd ( a , m ) x=\frac{b}{d}x_0+\frac{m}{d}k,\ \ \ d=\text{gcd}(a,m) x=dbx0+dmk,   d=gcd(a,m)
下面是推导过程。利用扩欧,我们可以计算出一组解,记为 x 0 , y 0 x_0, y_0 x0,y0
∴ a x 0 + m y 0 = d     ( 1 ) \therefore ax_0+my_0=d\ \ \ (1) ax0+my0=d   (1)
∵ a x + m y = d     ( 2 ) \because ax+my=d\ \ \ (2) ax+my=d   (2)
∴ a x 0 + m y 0 = a x + m y → a x 0 − a x = m y − m y 0 → a ( x 0 − x ) = m ( y − y 0 ) \therefore ax_0+my_0=ax+my \rightarrow ax_0-ax=my-my_0 \rightarrow a(x_0-x)=m(y-y_0) ax0+my0=ax+myax0ax=mymy0a(x0x)=m(yy0)
为了求最小解,方程两边都处于 d d d,得到
a d ( x 0 − x ) = m d ( y − y 0 ) \frac{a}{d}(x_0-x)=\frac{m}{d}(y-y_0) da(x0x)=dm(yy0)
∵ gcd ( a d , m d ) ≡ 1 \because \text{gcd}(\frac{a}{d},\frac{m}{d}) \equiv 1 gcd(da,dm)1
∴ m d ∣ ( x 0 − x ) \therefore \frac{m}{d}|(x_0-x) dm(x0x),也就是 x 0 − x x_0-x x0x 一定是 m d \frac{m}{d} dm 的整数倍。
∴ x 0 − x = k m d \therefore x_0-x = k\frac{m}{d} x0x=kdm
∴ x = x 0 + k m d \therefore x=x_0+k\frac{m}{d} x=x0+kdm
一般 OI 中,都是要求一个最小的正整数解。
如果 x ≥ 0 x\ge 0 x0 x % m d x \% \frac{m}{d} x%dm 为一个介于 [ 0 , m d ) [0, \frac{m}{d}) [0,dm) 的最小正整数解。
如果 x < 0 x<0 x<0,因为 C++ 的取模结果 x % m d x \% \frac{m}{d} x%dm 为负数, ( x % m d + m d ) % m d (x \% \frac{m}{d}+\frac{m}{d})\% \frac{m}{d} (x%dm+dm)%dm 为一个介于 [ 0 , m d ) [0, \frac{m}{d}) [0,dm) 的最小正整数解。

中国剩余定理

{ x ≡ b 1   (   m o d     a 1 ) x ≡ b 2   (   m o d     a 2 ) . . . x ≡ b k   (   m o d     a k ) \begin{cases} x \equiv b_1\ (\bmod \ a_1)\\ x \equiv b_2\ (\bmod \ a_2)\\ ...\\ x \equiv b_k\ (\bmod \ a_k)\\ \end{cases} xb1 (mod a1)xb2 (mod a2)...xbk (mod ak)
其中所有的 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 都是互质,这里的 b i b_i bi 都小于 a i a_i ai

符号定义

a i a_i ai 表示扩展中国剩余定理的模数。
b i b_i bi 表示扩展中国剩余定理的余数。
如上公式所示。

简单解释

这样,我们可以构造一个数 A = a 1 ∗ a 2 ∗ ⋯ ∗ a n A=a_1*a_2*\cdots *a_n A=a1a2an,那么显然当我们求出 x x x 之后,加上或者减去 A A A 都是成立的。
下面考虑对于每一个同余方程的处理,
对于同余式 x ≡ b k   (   m o d     a k ) x \equiv b_k\ (\bmod\ a_k) xbk (mod ak),我们可以构造一个 A k = A / a k A_k=A/a_k Ak=A/ak,显然 gcd ( A k , a k ) = 1 \text{gcd}(A_k,a_k)=1 gcd(Ak,ak)=1,根据裴蜀定理可得,存在整数 i , j i,j i,j 使得 i A k + j a k = 1 iA_k+ja_k=1 iAk+jak=1,即 i A k ≡ 1   (   m o d     a k ) iA_k \equiv 1\ (\bmod\ a_k) iAk1 (mod ak)
因为 i A k   m o d   b k = 1 iA_k \bmod b_k=1 iAkmodbk=1,那么有 b i ∗ i A k   m o d   a k = b i b_i*iA_k \bmod a_k=b_i biiAkmodak=bi,这样 i i i 可以通过扩欧求得。所以该同余方程的一个解式 x = b i ∗ i ∗ A k x=b_i*i*A_k x=biiAk
这样,再回到整个方程组,我们继续构造 x = b 1 i 1 A 1 + b 2 i 2 A 2 + ⋯ + b n i n A n x=b_1i_1A_1+b_2i_2A_2+\cdots + b_ni_nA_n x=b1i1A1+b2i2A2++bninAn,那么这个数就是同余方程组的一个解。
因为对于第 k k k 个同余方程, A 1 ⋯ n A_{1\cdots n} A1n 中除了 A k A_k Ak 之外所有的数都是 a k a_k ak 的倍数,这样同余方程式成立的。

LL china(LL n) {
	LL N=1;
	for (LL i=1; i<=n; i++) {
		N*=a[i];
	}
	LL ans=0;
	for (LL i=1; i<=n; i++) {
		LL a=N/a[i], b=a[i], x, y;
		exgcd(a,b,x,y);
		ans+=a*((x%b+b)%b)*b[i];
	}
	return (ans%N+N)%N;
}

扩展中国剩余定理

扩展中国剩余定理,不需要中国剩余定理中的对模数要两两互质的要求。其实中国剩余定理就是 n n n 个同余方程。
{ x ≡ b 1   (   m o d     a 1 ) x ≡ b 2   (   m o d     a 2 ) . . . x ≡ b k   (   m o d     a k ) \begin{cases} x \equiv b_1\ (\bmod \ a_1)\\ x \equiv b_2\ (\bmod \ a_2)\\ ...\\ x \equiv b_k\ (\bmod \ a_k)\\ \end{cases} xb1 (mod a1)xb2 (mod a2)...xbk (mod ak)

个人理解

考虑已经求出来了前 k − 1 k−1 k1​ 个同余方程的解,得到的解为 ans​ ,设 lcm​ 为前 k − 1 k−1 k1​ 个方程中所有的 a i a_i ai​ 的最小公倍数,则前 k − 1 k−1 k1​ 个方程的解为 x=ans+i∗lcm​ ,而我们只需要确定一个 i i i​ 使得 a n s + i ∗ l c m ≡ b k   (   m o d     a k ) ans+i∗lcm \equiv b_k\ (\bmod\ a_k) ans+ilcmbk (mod ak),然后更新一下 lcm​ 就好了。
a n s + 1 ∗ l c m = b k   (   m o d     a k ) ans+1*lcm=b_k\ (\bmod\ a_k) ans+1lcm=bk (mod ak)
i ∗ l c m ≡ b k − a n s   (   m o d     a k ) i*lcm \equiv b_k-ans\ (\bmod\ a_k) ilcmbkans (mod ak)
由于 l c m lcm lcm a k a_k ak 不一定互质,设 gcd = gcd ( lcm , a k ) ,   c = ( b k − a n s )   m o d     a k \text{gcd}=\text{gcd}(\text{lcm}, a_k),\ c=(b_k-ans) \bmod\ a_k gcd=gcd(lcm,ak), c=(bkans)mod ak,这样由上式可得
i ∗ l c m + h ∗ a k = c i*lcm+h*a_k=c ilcm+hak=c
我们继续变形
i / g c d ∗ l c m + h ∗ a k / g c d = c / g c d i/gcd*lcm+h*a_k/gcd=c/gcd i/gcdlcm+hak/gcd=c/gcd
i / g c d ∗ l c m ≡ c / g c d   (   m o d     a k / g c d ) i/gcd*lcm \equiv c/gcd\ (\bmod\ a_k/gcd) i/gcdlcmc/gcd (mod ak/gcd)
此时, gcd ( l c m , b k / g c d ) = 1 \text{gcd}(lcm, b_k/gcd)=1 gcd(lcm,bk/gcd)=1,对于上面的方程,我们可以求出一个 j j j 满足 j ∗ l c m ≡ 1   (   m o d     a k / g c d ) j*lcm \equiv 1\ (\bmod\ a_k/gcd) jlcm1 (mod ak/gcd),然后再乘以 c / g c d c/gcd c/gcd 倍数即可。

模板代码

LL a[N];//模数 
LL b[N];//余数 

LL mul(LL x,LL y,LL p) {
	//快速乘, (x*y)%p
	LL res=0;
	while (y) {
		if (y%2) {
			res=(res+x)%p;
		}
		x=(x+x)%p;
		y/=2;
	}
	return res%p;
}

LL excrt(LL n) {
	//第一个方程
	LL m=a[1], ans=b[1];
	for (LL i=2; i<=n; i++) {
		//c就是前面bk-ans
		LL c=(b[i]-ans%a[i]+a[i])%a[i];
		LL x,y;
		LL d=exgcd(m, a[i], x, y);
		if ((b[i]-ans)%d) {
			return -1;//无解返回 -1
		}
		x=mul(x,c/d,a[i]/d);
		ans+=x*m;//更新ans
		m*=(a[i]/d);
		ans=(ans%m+m)%m;
	}
	return (ans%m+m)%m;
}

模板题

题 6591,也就是洛谷的 P4777

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
中国剩余定理(Chinese Remainder Theorem)是一种求解同余方程组的方法,可以用于解决一些数学和计算机科学问题。 下面是使用 C++ 实现中国剩余定理的示例代码: ```c++ #include <iostream> using namespace std; // 求 a 和 b 的最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } // 求 a 和 b 的最小公倍数 int lcm(int a, int b) { return a * b / gcd(a, b); } // 求逆元 int inv(int a, int m) { int x, y; int d = gcd(a, m); if (d == 1) { // 如果 a 和 m 互质,则存在逆元 x = 1; y = 0; while (a > 0) { int q = m / a; int t = m % a; m = a; a = t; int tmp = x - q * y; x = y; y = tmp; } return x < 0 ? x + m : x; } else { // 如果 a 和 m 不互质,则不存在逆元 return -1; } } // 中国剩余定理 int CRT(int a[], int m[], int n) { int M = 1; for (int i = 0; i < n; i++) { M = lcm(M, m[i]); // 求所有模数的最小公倍数 } int x = 0; for (int i = 0; i < n; i++) { int Mi = M / m[i]; int ti = inv(Mi, m[i]); x = (x + a[i] * Mi * ti) % M; } return x; } int main() { int a[] = {2, 3, 2}; int m[] = {3, 5, 7}; int n = 3; int x = CRT(a, m, n); // 求解同余方程组 cout << "x = " << x << endl; return 0; } ``` 在上面的代码中,`CRT()` 函数接收三个参数:`a` 数组表示模方程组中的余数,`m` 数组表示模数,`n` 表示模方程组的个数。函数返回值是模方程组的解。 需要注意的是,该代码中求解逆元的方法是使用扩展欧几里得算法。如果模数很大,可以使用欧拉定理和扩展欧拉定理来求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值