背包问题(Knapsack Problem)—— 完全背包问题 —— (1)背包价值最大

本文详细介绍了完全背包问题,与01背包的区别在于物品数量无限。通过动态规划方法,利用状态转移方程求解如何使背包中物品的总价值达到最大。以一个包含4件物品和背包总重量为10的实例,逐步解析了动态规划数组f的变化过程,展示了如何遍历每个物品并确定最佳选择,以实现价值最大化。
摘要由CSDN通过智能技术生成

完全背包

和 01 背包相比,完全背包问题唯一的区别就是没有限制物品的数量。
也就是说,每个物品的数量是无限的。而 01 背包是限制每个物品只有且只有唯一一件。
因此,完全背包问题,就是一个简单的动态规划问题。
在这里插入图片描述

让背包里物品总价值最大

我们可以知道对于第 i i i 件物品而言,我们有两个选择:选或者不选。使用动态规划的思想,这样我们可以得出如下的状态转移方程:

  • 当我们
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值