欧拉定理

什么是欧拉定理

数论上的欧拉定理,指的是

a x ≡ 1 ( m o d   n ) a^x \equiv 1 (mod\ n) ax1(mod n)

这个式子实在a和n互质的前提下成立的。

欧拉定理的证明

首先,我们知道在1到n的数中,与n互质的一共有 φ ( n ) φ(n) φ(n)个,所以我们把这 φ ( n ) φ(n) φ(n)个数拿出来,放到设出的集合X中,即为 x 1 , x 2 … … x φ ( n ) x_1,x_2……x_{φ(n)} x1,x2xφ(n)

那么接下来,我们可以再设出一个集合为 M M M,设 M M M中的数为:

m 1 = a ∗ x 1 m 2 = a ∗ x 2 … … m φ ( n ) = a ∗ x φ ( n ) m1=a*x1 \\m2=a*x2 \\…… \\mφ(n)=a*xφ(n) m1=ax1m2=ax2mφ(n)=axφ(n)

下面我们证明两个推理:

一、M中任意两个数都不模n同余。

反证法。

证明:假设 M M M中存在两个数设为 m a , m b m_a,m_b ma,mb n n n同余。

​ 即 m a ≡ m b m_a \equiv m_b mamb

​ 移项得到: m a − m b = n ∗ k m_a-m_b=n*k mamb=nk
​ 再将 m m m x x x来表示得到: a ∗ x a − a ∗ x b = n ∗ k a∗x_a−a∗x_b=n∗k axaaxb=nk

​ 提取公因式得到 a ∗ ( x a − x b ) = n ∗ k a∗(x_a−x_b)=n∗k a(xaxb)=nk

​ 我们现在已知a与n互质,那么式子就可以转化为: x a − x b ≡ ( m o d   n ) x_a−x_b\equiv(mod\ n) xaxbmod n)

,因为 a a a中没有与 n n n的公因子( 1 1 1除外)所以 a a a对模 n n n同余 0 0 0并没有什么贡献。

​ 又因为 x a , x b x_a,x_b xa,xb都是小于 n n n的并且不会相同,所以 x a − x b x_a−x_b xaxb一定是小于 n n n的,那么上述的式子自然全都不成立。

​ 假设不成立。

证得:M中任意两个数都不模n同余。

二、M中的数除以n的余数全部与n互质。

证明:我们已知 m i = a ∗ x i m_i=a∗x_i mi=axi.

​ 又因为 a a a n n n互质, x i x_i xi n n n互质,所以可得 m i m_i mi n n n互质。

​ 带入到欧几里得算法中推一步就好了。

​ 即:

g c d ( a ∗ x i , n ) = g c d ( m i , n ) = g c d ( n , m i m o d   n ) = 1 gcd(a∗x_i,n)=gcd(m_i,n)=gcd(n,m_imod\ n)=1 gcd(axi,n)=gcd(mi,n)=gcd(n,mimod n)=1

证毕。

推式子

根据我们证得的两个性质,就可以开始推式子了。

首先,根据第二个性质可以知道,M中的数分别对应X中的每个数模n同余。

所以可以得到:

m 1 ∗ m 2 ∗ … … ∗ m φ ( n ) ≡ x 1 ∗ x 2 ∗ … … ∗ x φ ( n ) ( m o d   n ) m_1*m_2*……*m_{φ(n)}\equiv x_1*x_2*……*x_{φ(n)}(mod\ n) m1m2mφ(n)x1x2xφ(n)(mod n)

现在我们把 m i m_i mi替换成 x x x的形式,就可以得到:

a ∗ x 1 ∗ a ∗ x 2 ∗ … … ∗ a ∗ x φ ( n ) ≡ x 1 ∗ x 2 ∗ … … ∗ x φ ( n ) ( m o d   n ) a*x_1*a*x_2*……*a*x_{φ(n)}\equiv x_1*x_2*……*x_{φ(n)}(mod\ n) ax1ax2axφ(n)x1x2xφ(n)(mod n)

很显然,我们应该移项了,但是在移项之前,我们认为这么多的 a a a很烦,那么就先乘起来:

a φ ( n ) ∗ ( x 1 ∗ x 2 … … ∗ x φ ( n ) ) ≡ x 1 ∗ x 2 … … ∗ x φ ( n ) ( m o d n ) a^{φ(n)}*(x_1*x_2……*x_{φ(n)})\equiv x_1*x_2……*x_{φ(n)}(mod n) aφ(n)(x1x2xφ(n))x1x2xφ(n)(modn)

我们凑出了 a φ ( n ) a^{φ(n)} aφ(n),那么就开始移项:
( a φ ( n ) − 1 ) ∗ ( x 1 ∗ x 2 … … ∗ x φ ( n ) ) ≡ 0 ( m o d n ) (a^{φ(n)}-1)*(x_1*x_2……*x_{φ(n)})\equiv 0(mod n) (aφ(n)1)(x1x2xφ(n))0(modn)

然后,就可证明:

a φ ( n ) ≡ 1 ( m o d n ) a^{φ(n)}\equiv 1(mod n) aφ(n)1(modn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值