欧拉定理
在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。
欧拉定理有什么用?欧拉定理是RSA算法的核心。要实现RSA算法,需要编程实现此定理。
那么什么是同余?余,就是余数;mod之后的余数。
同余
数论中的重要概念。给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。
对模m同余是整数的一个等价关系。
欧拉φ函数的值
通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。
(注意:每种质因数只一个。比如12=2*2*3 欧拉公式
那么φ(12)=12*(1-1/2)*(1-1/3)=4
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数