题目描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路分析:
要重建一个二叉树,必须知道该二叉树的中序遍历以及前序、后序中的任一种遍历方式即可。这里是前序和中序遍历。
前序遍历的第一个节点为整个二叉树的根节点,而在中序遍历中,确定根节点的位置则根节点的左边为左子树的中序遍历结果,而且可以确定左子树的节点个数,从而根据节点个数在前序遍历结果中找到左子树的前序遍历结果。
递归左子树。右子树同理。
代码如下:
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre.length==0)
return null;
//建立二叉树的根节点
TreeNode tree = new TreeNode(pre[0]);
if(pre.length==1){
tree.left = null;
tree.right = null;
return tree;
}
int root = 0;
//找出根节点在中序遍历数组中的位置。
for(int i = 0; i<in.length;i++){
if(in[i]==pre[0]){
root = i;
break;
}
}
if(root>0){
int[] pre_left = new int[root];
int[] in_left = new int[root];
//生成左子树的前中序遍历数组。
for(int i = 0;i<root;i++){
pre_left[i] = pre[i+1];
in_left[i] = in[i];
}
//递归构建左子树。
tree.left = reConstructBinaryTree(pre_left,in_left);
}else{
tree.left = null;
}
if(in.length-root-1>0){
int[] pre_right = new int[in.length-root-1];
int[] in_right = new int[in.length-root-1];
//生成右子树的前中序遍历数组。
for(int i = 0;i<in.length-root-1;i++){
pre_right[i] = pre[root+1+i];
in_right[i] = in[root+1+i];
}
//递归构建右子树。
tree.right = reConstructBinaryTree(pre_right,in_right);
}else{
tree.right = null;
}
return tree;
}
}