剑指Offer - 数据流中的中位数(Java实现)

题目描述:

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

思路分析:

本题主要涉及最大堆和最小堆的问题,Java中优先级队列PriorityQueue其实就是堆结构。
生成两堆结构,最大堆中堆顶元素是该堆中最大的,最小堆中堆顶元素是该堆中最小的。最大堆保存较小的前半部分数,最小堆保存后半部分数;当两堆元素相差不超过1时,中位数就在两堆顶元素之间。
①.当获取到数据时,先判断最大堆是否为空?
②若为空时,则将获取到的数据添加到最大堆中;
③若最大堆不为空时需要比较最大堆堆顶元素与获取到的元素的大小,若最大堆堆顶元素大,则将该元素添加至最大堆中;若新元素大,则需要判断最小堆的情况。
④若最小堆为空时,直接将该元素添加至最小堆中;若最小堆不为空,则需比较新元素与最小堆堆顶元素的大小;
⑤若最小堆堆顶元素小于等于,则将该元素添加至最小堆中;反之,则将该元素添加至最大堆中。
⑥添加完成后,需要根据两个堆的大小情况平衡两堆中的元素,使之相差不超过1。

获取中位数时,判断已获取的数据的长度,若为偶数则在两堆顶元素之间;若为基数,则中位数是元素较多的堆的堆顶,返回即可。

代码实现:
import java.util.PriorityQueue;
import java.util.Comparator;

public class Solution {

   //生成最大堆
    PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(11,new maxHeapComparator());
    //生成最小堆
    PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(11,new minHeapComparator());
    
    int maxSize = 0;//初始化堆的大小,防止NullPointerException
    int minSize = 0;
    
    public void reshapeHeapSize(){//平衡两堆元素的数目
        if(this.maxHeap.size() == this.minHeap.size() + 2){
            this.minHeap.add(this.maxHeap.poll());
        }
        if(this.minHeap.size() == this.maxHeap.size() + 2){
            this.maxHeap.add(this.minHeap.poll());
        }
    }
    
    public void Insert(Integer num) {
        
        if(this.maxHeap.isEmpty()){
            this.maxHeap.add(num);
        }else{
            if(this.maxHeap.peek() > num){
                this.maxHeap.add(num);
            }else{
                if(this.minHeap.isEmpty()){
                    this.minHeap.add(num);
                }else{
                    if(this.minHeap.peek() <= num){
                        this.minHeap.add(num);
                    }else{
                        this.maxHeap.add(num);
                    }
                }
            }
        }
        reshapeHeapSize();
    }

    public Double GetMedian() {
    	if(!maxHeap.isEmpty()){
    		 maxSize = this.maxHeap.size();
    	}
    	if(!minHeap.isEmpty()){
    		minSize = this.minHeap.size();
    	}
        if(maxSize+minSize == 0){
            throw new RuntimeException();
        }
        Integer maxHeapNum = this.maxHeap.peek();
        Integer minHeapNum = this.minHeap.peek();
        if(((maxSize + minSize) % 2) == 0){
            return (double)((maxHeapNum+minHeapNum))/2;
        }else{
            return (double)(maxSize > minSize ? maxHeapNum : minHeapNum);
        }
    }
    
    public class minHeapComparator implements Comparator<Integer>{
        public int compare(Integer o1,Integer o2){
            return o1-o2;
        }
    }
    public class maxHeapComparator implements Comparator<Integer>{
        public int compare(Integer o1,Integer o2){
        	return o2-o1;
        }
    }


}

注意这里有个问题,获取堆中元素个数时,当堆为空时,返回值并不是0,而是null,在后面返回输出时会有无指针异常的错误,所以一开始就给size赋值为0,当不为空时才返回堆中的个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值