二分图的最大匹配 匈牙利算法

转自:http://www.renfei.org/blog/bipartite-matching.html Renfei Song
写的非常详细,清晰。
这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 UU 和VV ,使得每一条边都分别连接UU、VV中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。
这里写图片描述这里写图片描述这里写图片描述这里写图片描述
我们定义匹配点、匹配边、未匹配点、非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。
这里写图片描述

基本概念讲完了。求解最大匹配问题的一个算法是匈牙利算法,下面讲的概念都为这个算法服务。

这里写图片描述

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

这里写图片描述

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

这里写图片描述这里写图片描述这里写图片描述

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。

定理补充:
最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

最大独立数:选取最多的点,使任意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
模板1:

intn1, n2, m, ans;
int result[101];//记录V2中的点匹配的点的编号
bool state[101];//记录V2中的每个点是否被搜索过
bool data[101][101];//邻接矩阵true代表有边相连
void init()
{
    int t1, t2;
    memset(data, 0, sizeof(data));
    memset(result, 0, sizeof(result));
    ans = 0;
    scanf("%d%d%d", &n1, &n2, &m);

    for(int i = 1; i <= m; i++)
    {
        scanf("%d%d", &t1, &t2);
        data[t1][t2] = true;
    }

    return;
}
bool find(inta)
{
    for(int i = 1; i <= n2; i++)
    {
        if(data[a][i] == 1 && !state[i]) //如果节点i与a相邻并且未被查找过
        {
            state[i] = true; //标记i为已查找过

            if(result[i] == 0 //如果i未在前一个匹配M中
                || find(result[i])) //i在匹配M中,但是从与i相邻的节点出发可以有增广路
            {
                result[i] = a; //记录查找成功记录
                                result[a]  =  i;
                returntrue;//返回查找成功
            }
        }
    }

    return false;
}
int main()
{
    init();

    for(int i = 1; i <= n1; i++)
    {
        memset(state, 0, sizeof(state)); //清空上次搜索时的标记
        if(find(i))
        {
            ans++;    //从节点i尝试扩展
        }
    }

    printf("%d\n", ans);
    return 0;
}

模板2:

模板二: Hopcroft-Carp算法

这个算法比匈牙利算法的时间复杂度要小,大数据可以采用这个算法
/* *********************************************
二分图匹配(Hopcroft-Carp的算法)。
初始化:g[][]邻接矩阵
调用:res=MaxMatch();  Nx,Ny要初始化!!!
时间复杂大为 O(V^0.5 E)

适用于数据较大的二分匹配
需要queue头文件
********************************************** */
const int MAXN=3000;
const int INF=1<<28;
int g[MAXN][MAXN],Mx[MAXN],My[MAXN],Nx,Ny;
int dx[MAXN],dy[MAXN],dis;
bool vst[MAXN];
bool searchP()
{
    queue<int>Q;
    dis=INF;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i=0;i<Nx;i++)
        if(Mx[i]==-1)
        {
            Q.push(i);
            dx[i]=0;
        }
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        if(dx[u]>dis)  break;
        for(int v=0;v<Ny;v++)
            if(g[u][v]&&dy[v]==-1)
            {
                dy[v]=dx[u]+1;
                if(My[v]==-1)  dis=dy[v];
                else
                {
                    dx[My[v]]=dy[v]+1;
                    Q.push(My[v]);
                }
            }
    }
    return dis!=INF;
}
bool DFS(int u)
{
    for(int v=0;v<Ny;v++)
       if(!vst[v]&&g[u][v]&&dy[v]==dx[u]+1)
       {
           vst[v]=1;
           if(My[v]!=-1&&dy[v]==dis) continue;
           if(My[v]==-1||DFS(My[v]))
           {
               My[v]=u;
               Mx[u]=v;
               return 1;
           }
       }
    return 0;
}
int MaxMatch()
{
    int res=0;
    memset(Mx,-1,sizeof(Mx));
    memset(My,-1,sizeof(My));
    while(searchP())
    {
        memset(vst,0,sizeof(vst));
        for(int i=0;i<Nx;i++)
          if(Mx[i]==-1&&DFS(i))  res++;
    }
    return res;
}

模板3:

//************************************************
HDU 1054
用STL中的vector建立邻接表实现匈牙利算法
效率比较高
const int MAXN=1505;//这个值要超过两边个数的较大者,因为有linker

int linker[MAXN];

bool used[MAXN];

vector<int>map[MAXN];

int uN;

bool dfs(int u)

{

    for(int i=0;i<map[u].size();i++)

    {

        if(!used[map[u][i]])

        {

            used[map[u][i]]=true;

            if(linker[map[u][i]]==-1||dfs(linker[map[u][i]]))

            {

                linker[map[u][i]]=u;

                return true;

            }

        }

    }

    return false;

}

inthungary()

{

    int u;

    int res=0;

    memset(linker,-1,sizeof(linker));

    for(u=0;u<uN;u++)

    {

        memset(used,false,sizeof(used));

        if(dfs(u)) res++;

    }

    return res;

}

//*****************************************************

int main()

{

    int u,k,v;

    int n;

    while(scanf("%d",&n)!=EOF)

    {

        for(int i=0;i<MAXN;i++)

           map[i].clear();

        for(int i=0;i<n;i++)

        {

            scanf("%d:(%d)",&u,&k);

            while(k--)

            {

                scanf("%d",&v);

                map[u].push_back(v);

                map[v].push_back(u);

            }

        }

        uN=n;

        printf("%d\n",hungary()/2);

    }

    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值