poj1014 Dividing题解

原题:http://acm.pku.edu.cn/JudgeOnline/problem?id=1014

网上很多人说直接采用dp就可以了,但是我觉得不用那么复杂,用贪心算法+回溯+剪枝就可以了,而且特快,运行时间为0.

1.首先,将所有石子价值先加,如果sum为奇数,则返回false.

2.然后,采用贪心策略在石子中选择价值和为sum/2的组合,如果组合成功,返回true,否则false.

   a).既然贪心,那当然首先选价值为6的石子,在不大于sum/2的前提下,尽量多选,假设数量为count。然后是价值为5,4,3,。。。

   b).所谓回溯,就是当以上不能成功组合时,将count--,既少选一个,然后又是5,4,3,。。。

   c).如果仅仅采用以上的步骤,最终答案肯定是正确的,但是肯定也会超时。因为某一价值的石子最大数量为20000,如果count--,得遍历多少啊。所以我们还要采用剪枝算法。

   以第一步选择价值为6的石子为例,如果接下去的选择价值为5的石子的数量超过6个,则我们可以用5个价值为6的石子替代;同样,如果再接下去的选择价值为4的石子的个子超过3个,我们也可以用2个价值为6的石子替代,依此类推。于是我们可以得到,在有足够的价值为6的石子的前提下,设选择6的个数为count,那么必须有(sum/2 - count*6)<=(5*5+4*2+3+2*2+5)= 45.也就是回溯时count减小到一定数量不满足以上不等式时就停止,这样将剪去大部分的无用的搜索。当然,接下去的选择5,4,3,。。。都如此。

POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值