12:分数求和

总时间限制: 

1000ms

 

内存限制: 

65536kB

描述

输入n个分数并对他们求和,并用最简形式表示。所谓最简形式是指:分子分母的最大公约数为1;若最终结果的分母为1,则直接用整数表示。

如:5/6、10/3均是最简形式,而3/6需要化简为1/2, 3/1需要化简为3。

分子和分母均不为0,也不为负数。

输入

第一行是一个整数n,表示分数个数,1 <= n <= 10;
接下来n行,每行一个分数,用"p/q"的形式表示,不含空格,p,q均不超过10。

输出

输出只有一行,即最终结果的最简形式。若为分数,用"p/q"的形式表示。

样例输入

2
1/2
1/3

样例输出

5/6

 

写这个题的原因使a/b+c/d=(ad+bc)/bd 这样的话,就可以一边读入一边相加了,最后约到公约数就可以,这边用的gcd的方法来求的最大公约数,有兴趣的朋友可以去看看我之前写的一篇关于gcd的证明。 

这里初始化的时候需要注意,应该让c=0,d=1。

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;
	cin>>n;
	int a,b,c=0,d=1;
	for(int i=1;i<=n;i++)
	{
		scanf("%d/%d",&a,&b);
		c=a*d+b*c;
		d=b*d;
	}
	a=c;
	b=d;
	while(b)
	{
		int c=a%b;
		a=b;
		b=c;
	}
	c/=a;
	d/=a;
	if(d!=1) cout<<c<<'/'<<d<<endl;
	else cout<<c<<endl;
	return 0; 
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值