IT小鸟初展翅,各路大虾请支持

北航同学们这学期的软件工程课就要结束了,这是他们的博客:

2014个人博客列表///2014年团队博客

同学们期待自己一学期课程攒下的各项心得能够与更多校外的朋友交流切磋,欢迎各路朋友前去给这些个人博客和团队博客打分并点评——

也许您能从中挖掘出公司未来想要的人才,

也许您还能因为认真的点评而收获意外的礼物。



团队博客举例

1.看看这个团队是怎样给团队分配分数的

第5周团队作业2:分数分配
摘录:经过我们团队的协商,我们一致认为在团队项目没有完成之前,是无法确定每个人的分数的。在整个程序的设计开发中,有很多不确定的因素,这可能会改变原始设定的分工。而整个团队在协调的过程中,必定与项目开始之前的任务分配有所不同,而各自的任务量也会有所改变。所以在这里只能提供一个大致的算法,在任务结束之后根据这个算法来分配分数。

你会对这样的团队贡献分配方式有什么样的看法呢?

2.这是另一个小组在项目第一阶段后进行的小结

M1阶段事后总结
摘录: 两个问题:
1) 对比敏捷的原则, 你觉得你们小组做得最好的是什么?
我们觉得我们小组做的最好的地方是敏捷原则中的“拥抱变化”。每当有新的问题出现时,我们都可以最迅速地解决。在代码刚拿到手我们大概读了一遍后,我们发现整个项目与我们想象的完全不同:代码质量没想象中的好,功能实现差的很多,没想到的还有要学服务器、数据库还有TFS得使用。但是我们通过1次网上讨论,两次全员会议和多次部分人员会议迅速地制定了下一步地方向。
开发过程中,我们又遇到很多没想到的新问题:1最开始测试的时候,发现怎么爬都爬不到pdf文件,即使爬到的pdf也只是数据库中的坏项,最后发现是学长保存pdf文件的bug;2由于是多线程程序,新增的热度排序功能实现起来难度很大,BUG很多;3临展示发现选择本地文件功能没用;4临展示下一组告诉我们数据库有问题。可我们都通过及时地内部讨论、变更计划、重新规划计划完成了最终的ALPHA版本,这是 我们小组最棒最自豪的地方
2) 什么是在下个阶段 M2 要改进的地方?越具体越好。下一阶段我们必须改进的是要做好整体地规划:在这一阶段,我们需求讨论阶段做了大约两天,讨论出结果后以为可以开始干活了,可是之后进行过程中发现事实不是如此。或者是做的功能多余,或者是做完已有功能后不知道下一阶段干什么,导致软件开发过程中走了很多弯路。
因此,我们下一阶段必须在整体地架构上多费功夫。 这个不是会不会的问题,而是用心不用心的问题。我们要花大约3天的时间来仔细地探讨我们的需求,尽可能多地罗列,然后为每个需求得重要性、可行性进行评估,得出实现每个需求的性价比。然后结合我们可以开发的时间,来确定最终需求。同时留出缓冲区时间,以防止意外需求或某些不可控因素干扰进程。这样我们就可以保证我们的需求对症下药、药到病除,以最少地精力达到最好的效果。

个人博客举例

1. 个人阅读作业——回顾与体会

有个朋友说,看到这位同学写的这段话,他就想列为“待抢”:

更深的感受不是出自我们的项目,毕竟从alpha到beta的过程更像是继续开发+测试,当然我们曾经的bug也是让人费了力气, 感受到每一步都要认真对待的重要性。我自己在用软件时还是挺注重对开发者的反馈的,有些开发者或公司对我的反馈处理很及时并能体现在软件的更新中,用户体验很好。 其实维护,不是维护程序,而是维护用户的体验。希望未来我在工作中也能做好这个阶段,做一个“善解人意”的开发者。

2.代码互审 - rachelyeung

这篇小结通篇都在夸奖同伴,这样的姑娘会是抢手人才吗:

我的同伴是张艺,以前就知道她编程能力非常强,这一次的结对编程我也见识到她 做工程的能力
1.以前听说有很多大神的代码虽然效率很高但是代码的风格不是很好,可读性不是很强。但是看了她的代码我发现程序员的通病她并没有,对于自己的代码,尽管自己能够回忆起某一个函数或语句要实现的功能,她依旧给代码写上注释,这样别人不仅能通过注释很快获得她传达的信息。
2.尽管程序最基本的要求是实现功能,但是很多人在实现功能时不能完成除了老师给出的数据外的数据,没有普遍性。但是她的程序有很强的适配性,每做出一个功能齐全的程序都能当成一个完整的APP去应用。
3.代码没有冗余的地方,每一处代码都有其不可替代之处。
对于她的代码我一时可能说不上什么缺点,就先说说优点了。在她身上我有很多地方都需要学习。

3.【个人阅读作业】软件工程M1/M2总结

这位同学有这样的疑问,哪位大虾为他指点迷津:

我不懂既然有了有效开发 ,为什么还需要快速开发?因为从《快速软件开发》做的比较可以看出,有效开发的产品要好于快速开发的,而且进度和成本不会太差。谁的产品先出来,谁就有可能抢占市场,但是如果没有足够好的产品,当更好的产品出来后,不也是会被取代吗?

若你去博客上认真点评了(最少要点评两个团队博客和5个个人博客哦),也许你会收到一份礼物。礼物为何,暂且保密:)

希望你,能通过点评,学会或示范如何建设性地给他人的技术文章提出有效建议

代同学们谢谢你。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值