【Leetcode刷题笔记 持续更新】Day06

这篇博客分享了如何使用位运算技巧判断一个整数是否为2的幂次方。作者通过两种不同的位运算方法解释了如何快速检查一个数的二进制表示是否只有一个1,从而确定它是否为2的幂。这两个技巧分别是:n&(n-1) 和 n&-n。这两个简单的位运算可以帮助优化算法,避免了不必要的递归或错误的偶数判断。
摘要由CSDN通过智能技术生成

Day 06

停更了好一阵子,也不是不想写,只是总是坚持不下来,再加上被题一直虐都没心态了。重拾信心再次开启自己的努力之旅我也遇到了那个她,我要和她一起努力,为了以后更好的生活。冲鸭!!

2的幂

给你一个整数 n,请你判断该整数是否是 2 的幂次方。
如果是,返回 true ;否则,返回 false 。如果存在一个整数 x 使得 n == 2x ,则认为 n 是 2 的幂次方。
链接:https://leetcode-cn.com/problems/power-of-two
来源:力扣(LeetCode)

思路:开始的时候审题不仔细,以为直接判断是否整除2就可以,但是后来发现不对劲…那是判断是否为偶数,然后就只想到递归了。看到题解以后感觉智商被按在地上碾压了。现在将解题方法整理出来

第一个技巧是
n & n-1
该位运算技巧可以直接将 n 二进制表示的最低位 1 移除如果n为2的倍数,那么转换成为二进制的时候只有一位为1
所以减1以后再 按位与 应该会得到0所以可以用这种方法判断是否为2的幂

第二个技巧是
n & -n
-n 是 n 的相反数,是一个负数。该位运算技巧可以直接获取 n 二进制表示的最低位的 1
因为负数的二进制表示方法是补码存储,因此与整数 按位与 只会得到最低位的1
因此如果结果为n,则可以知道高位都是0,只有低位的一个1,因此也是2的幂

class Solution {
    public boolean isPowerOfTwo(int n) {
        return n > 0 && (n & (n - 1)) == 0;
    }
}
class Solution {
    public boolean isPowerOfTwo(int n) {
        return n > 0 && (n & -n) == n;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值