python机器学习手写算法系列——逻辑回归

从机器学习到逻辑回归

在这里插入图片描述
今天,我们只关注机器学习到线性回归这条线上的概念。别的以后再说。为了让大家听懂,我这次也不查维基百科了,直接按照自己的理解用大白话说,可能不是很严谨。

机器学习就是机器可以自己学习,而机器学习的方法就是利用现有的数据和算法,解出算法的参数。从而得到可以用的模型。

监督学习就是利用已有的数据(我们叫X,或者特征),和数据的标注(我们叫Y),找到x和y之间的对应关系,或者说是函数f。

回归分析是一种因变量为连续值得监督学习。而分类是一种应变量为非连续值的监督学习。

这里顺便提一句非连续值和连续值的英文有很多表述。

连续值可以是continuous, numerical, quantitative等。

非连续值可以是categorical, nominal, qualitative等。

逻辑回归虽然名字里面有回归两个字,但是它是分类分析,不是回归分析。逻辑回归,它之所以叫这个名字,是因为它和线性回归实在是太像了。

问题

这里,我们使用sklearn自带的癌症数据集。首先读入数据并放入pandas里面。

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
from sklearn.datasets import load_breast_cancer
#from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

dataset = load_breast_cancer()
data = pd.DataFrame(data=dataset.data, columns=dataset.feature_names)
data['cancer'] = [dataset.target_names[t] for t in dataset.target]

输出两个分类。

print(dataset.target_names)

[‘malignant’ ‘benign’]
翻译成中文是[‘恶性’ ‘良性’]。

输出

data[18:28]
no mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension cancer
18 19.810 22.15 130.00 1260.0 0.09831 0.10270 0.14790 0.09498 0.1582 0.05395 30.88 186.80 2398.0 0.1512 0.3150 0.53720 0.23880 0.2768 0.07615 malignant
19 13.540 14.36 87.46 566.3 0.09779 0.08129 0.06664 0.04781 0.1885 0.05766 19.26 99.70 711.2 0.1440 0.1773 0.23900 0.12880 0.2977 0.07259 benign
20 13.080 15.71 85.63 520.0 0.10750 0.12700 0.04568 0.03110 0.1967 0.06811 20.49 96.09 630.5 0.1312 0.2776 0.18900 0.07283 0.3184 0.08183 benign
21 9.504 12.44 60.34 273.9 0.10240 0.06492 0.02956 0.02076 0.1815 0.06905 15.66 65.13 314.9 0.1324 0.1148 0.08867 0.06227 0.2450 0.07773 benign
22 15.340 14.26 102.50 704.4 0.10730 0.21350 0.20770 0.09756 0.2521 0.07032 19.08 125.10 980.9 0.1390 0.5954 0.63050 0.23930 0.4667 0.09946 malignant
23 21.160 23.04 137.20 1404.0 0.09428 0.10220 0.10970 0.08632 0.1769 0.05278 35.59 188.00 2615.0 0.1401 0.2600 0.31550 0.20090 0.2822 0.07526 malignant
24 16.650 21.38 110.00 904.6 0.11210 0.14570 0.15250 0.09170 0.1995 0.06330 31.56 177.00 2215.0 0.1805 0.3578 0.46950 0.20950 0.3613 0.09564 malignant
25 17.140 16.40 116.00 912.7 0.11860 0.22760 0.22290 0.14010 0.3040 0.07413 21.40 152.40 1461.0 0.1545 0.3949 0.38530 0.25500 0.4066 0.10590 malignant
26 14.580 21.53 97.41 644.8 0.10540 0.18680 0.14250 0.08783 0.2252 0.06924 33.21 122.40 896.9 0.1525 0.6643 0.55390 0.27010 0.4264 0.12750 malignant
27 18.610 20.25 122.10 1094.0 0.09440 0.10660 0.14900 0.07731 0.1697 0.05699 27.26 139.90 1403.0 0.1338 0.2117 0.34460 0.14900 0.2341 0.07421 malignant

这里一共有30个属性。

手写算法

在这里插入图片描述

无论是线性回归,逻辑回归,以及我以后会写文章的神经网络,他们的基本思路都是一样的。首先,构建一个函数模型,用这个函数表示从x到y的映射关系。

然后构建一个损失函数loss function。它描述了模型函数 f ( x ) f(x) f(x)和真实值 y y y之间的差距。当然,这个差距越小越好。

最后是优化方法。优化方法首先计算损失函数对参数的导数。既,损失函数随参数是变大还是变小的。如果损失函数随着参数的变大而变小,则说明参数应该变大。如果损失函数随着参数的变小而变小,则说明参数应该变小。优化方法里面的 α \alpha α是学习率,一个小于1的数值,可以是0.01,0.001, 甚至更小。

模型函数

这里,我们的y值,并非连续的。要么 y = 0 y=0 y=0,要么 y = 1 y=1 y=1。所以,和线性回归相比,我们要把 y y y控制在0和1之间。这时,前人引进了sigmoid函数。当x大于0时,y无限接近于1;当x小于0时,y无限接近于0;当x等于0时,y=0.5。

y ^ = 1 1 + e − z \hat{y}=\frac{1}{1 + e^{- z}} y^=1+ez1 其中 z = θ x z=\theta x z=θx

def sigmoid(z):
    s = 1/(1+np.exp(-z))
    s = s.reshape(s.shape[0],1)
    return s

我们可以把这个函数画出来看看。

def draw_sigmoid():
    x = np.arange(-6, 6, .01)
    y = sigmoid(x)

    plt.plot(x, y, color='red', lw=2)
    plt.show()

draw_sigmoid()

在这里插入图片描述
最终,我们的模型函数是:

def model(theta, X):
    z = np.sum(theta.T * X, axis=1)
    return sigmoid(z)

损失函数

这里,损失函数用的是cross entropy,的定义如下。

J = − y ∗ l o g ( y ^ ) − ( 1 − y ) ∗ l o g ( 1 − y ^ ) J= - y * log(\hat{y}) - (1-y) * log(1-\hat{y}) J=ylog(y^)(1y)log(1y^)

#cross_entropy
def cross_entropy(y, y_hat):
    n_samples = y.shape[0]
    return sum(-y*np.log(y_hat)-(1-y)*np.log(1-y_hat))/n_samples

def cost_function(theta, X, y):
    y_hat = model(theta, X)
    return cross_entropy(y, y_hat)

优化函数

这里先要解决 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ

因为有

J = − y ∗ l o g ( y ^ ) − ( 1 − y ) ∗ l o g ( 1 − y ^ ) J= - y * log(\hat{y}) - (1-y) * log(1-\hat{y}) J=ylog(y^)(1y)log(1y^)

所以

∂ J ∂ θ = − ∂ ( y ∗ l o g ( y ^ ) + ( 1 − y ) ∗ l o g ( 1 − y ^ ) ) ∂ θ \frac{\partial J}{\partial \theta} = - \frac{\partial (y * log(\hat{y}) + (1-y) * log(1-\hat{y}))}{\partial \theta} θJ=θ(ylog(y^)+(1y)log(1y^))

= − ∂ ( y ∗ l o g ( y ^ ) ) ∂ θ − ∂ ( ( 1 − y ) ∗ l o g ( 1 − y ^ ) ) ∂ θ = - \frac{\partial (y * log(\hat{y}))}{\partial \theta} - \frac{\partial ((1-y) * log(1-\hat{y}))}{\partial \theta} =θ(ylog(y^))θ((1y)log(1y^))

= −

  • 18
    点赞
  • 104
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

织网者Eric

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值