
Tensorflow
Freely~
Enjoy coding
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Tensorflow深度学习笔记(二)-图、会话和变量
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。1.Tensortensor [‘tɛnsɚ],表示张量,在TensorFlow中常用Tensor来描述矩阵信息。如下表示创建一个tensor,并将其初始化为0(原创 2017-11-11 10:27:09 · 569 阅读 · 0 评论 -
深入解析Linux 常用命令--cat
深入解析Linux常用命令–cat1.概述cat常用于查看文件内容。2.显示文件内容(显示字符)cat -A 显示文件内容,包括结束符、TAB。其中结束符以$显示,TAB以^I显示,空格不显示。[root@smart Desktop]# cat test.mdAUTHOR Written by Richard M. Stallman and Davi原创 2017-12-20 20:17:11 · 386 阅读 · 0 评论 -
Tensorflow深度学习笔记(十)--模型保存与重新载入
在深度学习过程中我们会训练很多的模型,有些模型的训练很费时间。是否可以保存已经训练好的模型应用于后续的图像识别呢?答案自然是肯定的,本节我们来讲述模型的保存与载入。1.模型的保存模型的保存有两个步骤:a.创建saver对象 saver = tf.train.Saver()b.训练完成后,保存模型 saver.save(sess,’net/my_net.ckp原创 2017-12-14 22:25:16 · 2519 阅读 · 0 评论 -
Tensorflow深度学习笔记(八)-Tensorboard应用
tensorboard可以以图形的方式观察训练过程,直观的显示训练情况。下面采用之前的代码,再加上tensorboard相关代码。本文主要介绍MNIST训练集的tensorboard的输入可视化。# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data原创 2017-12-05 22:56:45 · 2073 阅读 · 4 评论 -
Tensorflow深度学习笔记(七)-Tensorboard应用
tensorboard可以以图形的方式观察训练过程,直观的显示训练情况。下面采用之前的代码,再加上tensorboard相关代码。# coding: utf-8import tensorflow as tfimport numpy as np#使用numpy随机产生100个随机点x_data=np.random.rand(100)y_data = x_data*0.1+0.3#构造一个线性模原创 2017-12-04 21:43:49 · 658 阅读 · 0 评论 -
Tensorflow深度学习笔记(五)--手写数字识别-MNIST数据测试
MNIST的结果是0-9,常用softmax函数进行分类,输出结果。softmax函数常用于分类,定义如下: softmax(xi)=exp(xi)∑jexp(x)softmax(x_i)=\frac{exp(x_i)}{\sum_jexp(x)}# coding: utf-8import tensorflow as tffrom ten原创 2017-12-01 22:07:07 · 1043 阅读 · 0 评论 -
Tensorflow深度学习笔记(六)--代价函数
代价函数在有些地方也称损失函数,目前常用的几种代价函数有二次代价函数、交叉熵代价函数、对数释然函数等。二次代价函数为基本的用来计算结果与预测值之间的差异。交叉熵代价函数可以解决二次函数导致学习慢问题对数释然函数常用来作为softmax回归的代价函数,如果输出层神经元是sigmoid函数,可以采用交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的代价函数是原创 2017-12-01 22:05:47 · 1969 阅读 · 0 评论 -
Tensorflow深度学习笔记(三)-TensorFlow基本应用(梯度下降法)
本文主要引入一个简单的示例来阐述Tensorflow的应用。先来一段程序,它是采用梯度下降法来训练数据。import tensorflow as tfimport numpy as np #numpy库为数学计算库,若导入失败,请先安装(pip install numpy)#使用numpy随机产生100个随机点x_data=np.random.rand(100)y_data = x_dat原创 2017-11-16 22:50:39 · 957 阅读 · 0 评论 -
Tensorflow深度学习笔记(一)Windows 10下安装Tensorflow1.4
Tensorflow深度学习框架已学习了一段时间,对其已有一定的了解,由于当时太过于追求速度,没有及时的记录学习过程,不利于打牢基础,遂特意从基础入门开始编写Tensorflow框架学习笔记。前言 首先,在学习Tensorflow前,你最好能够对Python的基本语法能够有一定的了解。可以从w3cschool学习一些基本知识,建议使用Python3版本,因为很多新开源的代码不兼容P原创 2017-11-04 23:06:36 · 3965 阅读 · 2 评论 -
Tensorflow深度学习笔记(四)-利用神经网络预测非线性回归示例
本文主要分享一个利用神经网络来预测非线性回归的示例。首先,定义生成我们的测试数据,即y_data = np.square(x_data) + noise,通过x_data的平方再加上噪声来生成y_data.然后,利用神经网络,将x_data作为输入,得到预测值。然后让预测值与y_data做比较,使其差异最小。x_data ==>神经网络中间层==>神经网络输出层==>预测值import tensor原创 2017-11-30 19:07:54 · 14076 阅读 · 1 评论 -
Tensorflow深度学习笔记(九)--卷积神经网络(CNN)
1.传统神经网络缺陷:权值太多,计算量太大,需要大量样本进行训练 .2.卷积神经网络,是一种前馈神经网络,人工神经元可以响应周围单元,可以大型图像处理。卷积神经网络包括卷积层和池化层。卷积操作是利用卷积核对图像的关键信息进行提取。卷积层:将图像与卷积核做卷积的过程。 池化层:对不同位置的特征进行聚合的过程。在深度学习中,利用多个卷积、池化操作来对图像进行分类。1原创 2017-12-08 19:19:21 · 1162 阅读 · 0 评论 -
Tensorflow深度学习笔记(十一)--利用Inception做图像识别
Inception是Google训练好的一个图像识别模型,我们可以利用它来对我们的图像进行识别。# coding: utf-8import tensorflow as tfimport osimport numpy as npimport refrom PIL import Imageimport matplotlib.pyplot as pltclass NodeLooku原创 2017-12-16 09:19:13 · 1937 阅读 · 1 评论