深度学习
Freely~
Enjoy coding
展开
-
Tensorflow深度学习笔记(二)-图、会话和变量
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。1.Tensortensor [‘tɛnsɚ],表示张量,在TensorFlow中常用Tensor来描述矩阵信息。如下表示创建一个tensor,并将其初始化为0(原创 2017-11-11 10:27:09 · 543 阅读 · 0 评论 -
Tensorflow深度学习笔记(九)--卷积神经网络(CNN)
1.传统神经网络缺陷:权值太多,计算量太大,需要大量样本进行训练 .2.卷积神经网络,是一种前馈神经网络,人工神经元可以响应周围单元,可以大型图像处理。卷积神经网络包括卷积层和池化层。卷积操作是利用卷积核对图像的关键信息进行提取。卷积层:将图像与卷积核做卷积的过程。 池化层:对不同位置的特征进行聚合的过程。在深度学习中,利用多个卷积、池化操作来对图像进行分类。1原创 2017-12-08 19:19:21 · 1119 阅读 · 0 评论 -
Tensorflow深度学习笔记(六)--代价函数
代价函数在有些地方也称损失函数,目前常用的几种代价函数有二次代价函数、交叉熵代价函数、对数释然函数等。二次代价函数为基本的用来计算结果与预测值之间的差异。交叉熵代价函数可以解决二次函数导致学习慢问题对数释然函数常用来作为softmax回归的代价函数,如果输出层神经元是sigmoid函数,可以采用交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的代价函数是原创 2017-12-01 22:05:47 · 1913 阅读 · 0 评论 -
Tensorflow深度学习笔记(八)-Tensorboard应用
tensorboard可以以图形的方式观察训练过程,直观的显示训练情况。下面采用之前的代码,再加上tensorboard相关代码。本文主要介绍MNIST训练集的tensorboard的输入可视化。# coding: utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data原创 2017-12-05 22:56:45 · 2011 阅读 · 4 评论 -
Tensorflow深度学习笔记(十)--模型保存与重新载入
在深度学习过程中我们会训练很多的模型,有些模型的训练很费时间。是否可以保存已经训练好的模型应用于后续的图像识别呢?答案自然是肯定的,本节我们来讲述模型的保存与载入。1.模型的保存模型的保存有两个步骤:a.创建saver对象 saver = tf.train.Saver()b.训练完成后,保存模型 saver.save(sess,’net/my_net.ckp原创 2017-12-14 22:25:16 · 2473 阅读 · 0 评论 -
Tensorflow深度学习笔记(十一)--利用Inception做图像识别
Inception是Google训练好的一个图像识别模型,我们可以利用它来对我们的图像进行识别。# coding: utf-8import tensorflow as tfimport osimport numpy as npimport refrom PIL import Imageimport matplotlib.pyplot as pltclass NodeLooku原创 2017-12-16 09:19:13 · 1883 阅读 · 1 评论