动态规划——数学辅助
文章平均质量分 82
无
迷蒙之雨
这个作者很懒,什么都没留下…
展开
-
[JSOI2018]机器人
计算答案时,考虑枚举撞到障碍的轮数,以及撞到的障碍,因为有循环节,所以所有循环节里州的路线是一样的,也就是说,如果第一轮走到了。现在给出若干障碍,对于每一个上述行走方案,走到障碍时会停止,求所有方案的行走的格子的个数和。,原因是每一步必定会到下一个对角线,所以该序列和对角线是一样的。中从左上走到某个点,或从某个点走到右下的方案数即可,显然可以。把性质一推广到模意义下,副对角线也推广到模意义下,那么。方便起见,我们可以把所有循环节的障碍重叠起来,设前。,那么左式一定会比比右式在p的指数上少,所以。原创 2022-12-28 22:15:38 · 819 阅读 · 5 评论 -
CF1349F1 Slime and Sequences (Easy Version)
的出现位置前面,那么这两个连续段应该会变成一个,就矛盾了。考虑把排列划分成若干极长的连续下降段,若第。这是显然的,把上述过程逆过来就好了。,称其是合法的当且仅当对于所有在。一定是合法的,否则就说明存在一个。的好序列中的出现次数之和。种选择,因为可以填到末尾。种选择,因为可以填到开头。的贡献就是它被划分在第。加入后上升个数不变,有。加入后上升个数加一,有。原创 2022-12-24 21:56:15 · 345 阅读 · 0 评论 -
[NOI2018] 冒泡排序(组合+卡特兰数+dp+树状数组)
洛谷题目传送门8ptsn!枚举排列,然后判断即可44pts首先考虑什么样的序列是符合条件的题目提示启发我们,可以考虑每个元素的移动因为总交换次数是要达到下界,所以每一次交换都必须是有益的考虑如果排列第i个位置是p[i]若p[i]=ip[i]=ip[i]=i,则这位置不能被交换若p[i]<ip[i]<ip[i]<i,则这个数需要往左移动,且不能向右移动那么不能存在一个j满足,j>i,p[j]<p[i]j>i,p[j]<p[i]j>i,p[j]原创 2022-04-30 17:11:44 · 375 阅读 · 0 评论 -
P3750 [六省联考2017]分手是祝愿(期望DP+质因数分解)
洛谷题目传送门先从这个题跳出来,思考如何用最少的次数将灯关掉因为一个灯能控制的灯都小于他,所以最右边的灯一定要按,因为如果按他的倍数就更不优,所以就从高到底扫一遍,遇到亮的灯就点一次,因为每个灯都是不可替代的,所以这启示我们这些灯在方案中是必须要按的求出这些灯的个数cntcntcnt,也就是最少要按的次数,如果cnt小于等于k,则直接输出cnt即可所以设f[i]f[i]f[i]表示将剩下iii盏必须要按的灯变成(i-1)盏必须要按的灯的期望次数f[i]=in×1+n−in×(f[i]+f[i+1]原创 2021-11-07 19:29:54 · 136 阅读 · 0 评论 -
[SHOI2012]随机树(期望dp+整数概率公式)
洛谷题目传送门解题思路分两问处理第一问设fif_ifi表示iii个叶子结点的平均深度的期望则此时叶子结点的期望深度和为i×fii\times f_ii×fi观察题目给出的操作,实质是减少了一个叶子结点,新增了两个叶子结点,且这两个叶子结点的深度是原来+1,也就是−fi+2×fi+2-f_i+2\times f_i+2−fi+2×fi+2所以答案为fi=i×fi−1+fi−1+2if_i=\frac{i\times f_{i-1}+f_{i-1}+2}{i}fi=ii×fi−1+fi原创 2021-11-07 18:30:27 · 147 阅读 · 0 评论 -
[SHOI2002]百事世界杯之旅(期望DP)
洛谷题目传送门解题思路设fif_ifi表示还差iii个名字没收集,一直到收集齐的期望次数fi=in(fi−1+1)+n−in(fi+1)f_i=\frac{i}{n}(f_{i-1}+1)+\frac{n-i}{n}(f_i+1)fi=ni(fi−1+1)+nn−i(fi+1)n×fi=i×(fi−1+1)+(n−i)×(fi+1)n\times f_i=i\times (f_{i-1}+1)+(n-i)\times (f_i+1)n×fi=i×(fi−1+1)+(n−i)×(fi原创 2021-11-06 20:04:18 · 126 阅读 · 0 评论 -
P3977 [TJOI2015]棋盘(状压DP+矩阵乘法)
洛谷题目传送门解题思路看到m小于等于6,立马觉得是状压先预处理出每一行合法的状态,再枚举相邻两行的状态i,j,若这两行的棋子不会互相攻击,则说明j可以从i转移,则开个vector存进去DP式:F[i][j]=∑k∈legal[j]F[i−1][k]F[i][j]=\sum_{k\in legal[j]}F[i-1][k]F[i][j]=k∈legal[j]∑F[i−1][k]其中legal表示j可以转移的状态集合期望得分:50分#include<bits/stdc++.h>us原创 2021-11-03 14:48:39 · 147 阅读 · 0 评论 -
ZROI 2021 10联day8 T1 题(期望+二维区间DP)
你要在一片菜地里捉兔子。菜地形如一个一个 N×M 的长方形网格,每个顶点要么是空的,要么有一个兔子洞。在每个洞里有恰好 44 只兔子。在土地的四个角都设置了逮兔陷阱(陷阱在坐标 [0,0],[0,M],[N,0],[N,M] 上)。你有一个彩弹枪和 K 颗彩弹,其中 K 是兔子洞的个数。所有的彩弹颜色都不一样,它们编号从 1 到 K 。你可以往任意兔子洞射一个彩弹。射出之后,该兔子洞的所有兔子都被染成彩弹的颜色,然后都跑出来,沿着四个方向逃窜。全部四只兔子的速度相同,兔子只能沿着网格边界跑。在移动的过原创 2021-10-31 19:29:48 · 1131 阅读 · 0 评论 -
矩阵乘法大作战
今天给我搞的要吐了[HNOI2008]GT考试题目描述阿申准备报名参加 GT 考试,准考证号为 nnn 位数 X1X2⋯Xn(0≤Xi≤9)X_1X_2\cdots X_n(0\le X_i\le 9)X1X2⋯Xn(0≤Xi≤9),他不希望准考证号上出现不吉利的数字。他的不吉利数字 A1A2⋯Am(0≤Ai≤9)A_1A_2\cdots A_m(0\le A_i\le 9)A1A2⋯Am(0≤Ai≤9) 有 mmm 位,不出现是指 X1X2⋯XnX_1X_2\cdots X_nX1原创 2021-10-28 21:18:32 · 4319 阅读 · 0 评论 -
SPOJ3734 PERIODNI(笛卡尔树+组合+DP)
SPOJ3734 PERIODNI洛谷题目传送门给定一个N列的表格,每列的高度各不相同,但底部对齐,然后向表格中填入K个相同的数,填写时要求不能有两个数在同一列,或同一行,下图中b是错误的填写,a是正确的填写,因为两个a虽然在同一行,但它们中间的表格断开。输出所有填写方案数对1 000 000 007的余数。解题思路这道题是加在笛卡尔树作业里的,那就是和笛卡尔树有关的先考虑一种简化情况如果是正方形,填n个数,那么第一行有n种,第二行有(n-1)种一共有n!n!n!种填法如果是矩形,长n,宽原创 2021-10-13 13:32:07 · 193 阅读 · 0 评论 -
CF1174E Ehab and the Expected GCD Problem(DP+数论)
题目传送门神仙DP题如果你点进了这篇题解,那么我建议你先再仔细读一遍题目如果你已经读完了题目,那么下文将不会再重复题意首先我们看能不能推一些性质:性质一:假设排列的第一个数 a=∏picia=\prod{p_i^{ci}}a=∏pici,也就是a的质因数分解形式那么这个排列的最大价值就为∑ci\sum{c_i}∑ci证明:这个排列的前缀gcd肯定是不增的,因为价值的定义为不同的个数,那么gcd最好也不能相等,那么因为每次的gcd都为原来的约数,并且不相等,那么我们每次至少把gcd的指数原创 2021-07-18 07:00:57 · 139 阅读 · 1 评论