[HNOI2019]校园旅行(生成树+二分图+DP+回文性质)

神仙好题啊~膜拜出题者
洛谷题目传送门

题目描述

给定一张无向图,每个点有权值v=0或1,q次询问,每次给出两个点,判断两点间是不是有一条路径,使得路径上经过的点的权值构成一个回文串,每个点,每条边可以重复走

解题思路

30pts

我们形式化地定义一下回文串
· 单个字符是回文串
· 两个相同字符是回文串
· 在回文串两端加上相同字符,依旧是回文串
这启示我们有一个30pts的dp
f i , j f_{i,j} fi,j表示 i i i j j j能否构成回文串,如果能,那么在这条路径两端加上相同字符依旧构成字符串,也就可以转移,可以用队列把所有可行的二元组存起来,依次向外扩展,初始条件,若 i , j i,j i,j颜色相同且 i , j i,j i,j有边,则 f i , j = 1 f_{i,j}=1 fi,j=1,特别的 f i , i = 1 f_{i,i}=1 fi,i=1,复杂度 O ( m 2 ) O(m^2) O(m2),瓶颈主要在于边数

100pts

上述DP的复杂度在于边数,而我们发现点数非常小,考虑能不能将边数缩小,也就是只保留有用的边
看下面一张图,这两个点间有一条符合条件的路径
在这里插入图片描述
因为题目中说某一个点可以重复经过,所以这两点间如果存在下面这样的路径也是合法的
在这里插入图片描述
这是因为我可以重复走一边这个白点
换句话说,如果这两点路径中有这样的两个点
S → … … → u → v → … … → T S\to……\to u \to v \to …… \to T SuvT
其中 u , v u,v u,v颜色相同,那么这样的也是合法的
S → … … → u → v → u → v → … … → T S\to……\to u \to v \to u \to v \to…… \to T SuvuvT
但是这个长度的奇偶性是不变的
我们也能发现只需要保证对应的两段的奇偶性相同,就能构成回文
所以我们考虑简化同色连通块内的边,显然如果这个连通块内任意两个点的路径长度奇偶性是固定的,不过怎么走都不会变,那么我们只需要保留这个连通块的最简形态即可,为了保证联通,这个最简形态一定是一颗生成树。
考虑什么样的连通子图满足上述性质,很显然只要不存在奇环就行,不存在奇环?看到这个很容易想到二分图
所以如果某个同色连通块是二分图,只保留它的一颗生成树
那么如果不是二分图呢,也就是说两个点间既可以通过奇数条边相连,也可以通过偶数条边相连,那么我们在保留生成树的基础上,留下一个奇环就行了,这样能保证如果想要转换奇偶性,来到这个奇环上走一圈就行了,那么最简单的奇环是什么,就是自环,所以如果不是二分图,保留一颗生成树和一个自环就行了
对于连接不同同色连通块的边,这些边也可能构成连通块,而且,这个连通块一定是一颗二分图,因为同色点内肯定没有边,根据上面的理论,保留一颗生成树就行了
所以我们的步骤就是,对于同色连通块,如果是二分图,保留一颗生成树,不是的话保留一颗生成树和一个自环,不同色连通块,保留一颗生成树就行了,容易证明这样的边数是 O ( n ) O(n) O(n)级别的
再做上面的算法,复杂度 O ( n 2 + m ) O(n^2+m) O(n2+m)
再次膜拜出题人,真的是神仙题
代码很好写

#include<bits/stdc++.h>
using namespace std;
const int N = 5020;
const int M = 5e5+7;
struct node
{
	int y,next;
}e[2*M];
int link[N],t=0;
void add(int x,int y)
{
	e[++t].y=y;
	e[t].next=link[x];
	link[x]=t;
}
char s[N];
int a[N];
int n,m,q;
inline int read()
{
	int X=0; bool flag=1; char ch=getchar();
	while(ch<'0'||ch>'9') {if(ch=='-') flag=0; ch=getchar();}
	while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
	if(flag) return X;
	return ~(X-1);
}
int f[N];
struct Edge
{
	int x,y;
};
queue<Edge> que;
bool ans[N][N];
void Insert(Edge x)
{
	que.push(x);
	ans[x.x][x.y]=1;
	ans[x.y][x.x]=1;
}
int col[N];
vector<int> G[N];
void Link(int x,int y)
{
	G[x].push_back(y);
	G[y].push_back(x);
}
bool Dye(int x,int c)
{
	col[x]=c;
	bool ok=1;
	for(int i=link[x];i;i=e[i].next)
	{
		int y=e[i].y;
		if(a[x]!=a[y]) continue;
		if(!col[y])
		{
			Link(x,y);
			ok&=Dye(y,3-c);
			Insert((Edge){x,y});
		}
		else if(col[x]==col[y]) ok=0;
	}
	return ok;
}
void Extand(int x,int y)
{
	for(int i=0;i<G[x].size();i++)
	{
		for(int j=0;j<G[y].size();j++)
		{
			int u=G[x][i],v=G[y][j];
			if(!ans[u][v]&&a[u]==a[v]) 
			Insert((Edge){u,v});
		}
	}
}
void dp()
{
	while(!que.empty())
	{
		int x=que.front().x,y=que.front().y;
		que.pop();
		Extand(x,y);
	}
}
int u[M],v[M];
int Find(int x)
{
	if(x==f[x]) return x;
	return f[x]=Find(f[x]);
}
int main()
{
	n=read();
	m=read();
	q=read();
	scanf("%s",s+1);
	for(int i=1;i<=n;i++)
	a[i]=s[i]-'0';
	for(int i=1;i<=m;i++)
	{
		int x=read(),y=read();
		add(x,y);
		add(y,x);
		u[i]=x;
		v[i]=y;
	}
	for(int i=1;i<=n;i++)
	{
		if(!col[i])
		{
			if(!Dye(i,1))
			G[i].push_back(i);
		}
	}	
	for(int i=1;i<=n;i++)
	f[i]=i;
	for(int i=1;i<=m;i++)
	{
		int x=u[i],y=v[i];
		if(a[x]!=a[y]&&Find(x)!=Find(y))
		{
			f[Find(y)]=Find(x);
			Link(x,y);
		}
	}
	for(int i=1;i<=n;i++)
	Insert((Edge){i,i});
	dp();
	while(q--)
	{
		int x=read(),y=read();
		if(ans[x][y]) printf("YES\n");
		else printf("NO\n");
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值