机器学习
文章平均质量分 89
一直在路上ing
这个作者很懒,什么都没留下…
展开
-
使用xgboost建立评分卡
1. 特征工程信用评分模型的主要目的是衡量一个用户的信用风险。因此,特征的构造也要围绕着反映用户信用等级的数据展开。特征构造主要是时间维度的聚合统计及跨时1.1 数据维度通常衡量一个用户的还款能力...原创 2021-06-25 10:19:15 · 7310 阅读 · 4 评论 -
数据缺失类型
一、完全随机缺失二、随机缺失三、非随机缺失原创 2021-04-30 17:26:18 · 13311 阅读 · 0 评论 -
决策树算法原理——cart
转载处刘建平博客 https://www.cnblogs.com/pinard/p/6053344.html 在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。CART算法也就是我们下面的重点了。由于CART算法可以做回归,也可以做分类,我们分别加以介绍,先从CART分类树算法开始,重点比较和转载 2020-12-17 10:35:27 · 1351 阅读 · 0 评论 -
决策树算法原理——ID3、C4.5
转载处刘建平博客https://www.cnblogs.com/pinard/p/6050306.html决策树算法在机器学习中算是很经典的一个算法系列了。它既可以作为分类算法,也可以作为回归算法,同时也特别适合集成学习比如随机森林。本文就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个详细的介绍。选择CART做重点介绍的原因是scikit-learn使用了优化版的CART算法作为其决策树算法的实现。1. 决策树ID3算法的信息论基础机器学习算法其实转载 2020-12-17 10:30:29 · 755 阅读 · 0 评论 -
statsmodel之summary参数解释
本文转载自:https://blog.csdn.net/weixin_44090397/article/details/97922297# -*-coding:utf-8 -*-import pandas as pdimport matplotlib.pyplot as pltimport matplotlibimport numpy as npimport time, datetimeimport statsmodels.api as smdf = pd.read_csv('D:\wor转载 2020-11-30 10:41:43 · 3933 阅读 · 0 评论