一.方法
- upper():将所有字符串转化大写
- lower():将所有字符串转化小写
- len():计算字符串长度
- strip():去除字符串两端空格
- lstrip():去除字符串左边空格
- rstrip():去除字符串右边空格
- replace('a','b'):将字符串中的a用b代替
- strip():将字符串拆生成成列表形式
- cat():串联字符串
二.实例
upper(),lower(),len()实例:
import pandas as pd
test = pd.Series(['a','b','c','d','A','ABc'],dtype='string')
#结果:
0 a
1 b
2 c
3 d
4 A
5 ABc
dtype: string
#全部转化成大写
test.str.upper()
#结果
0 A
1 B
2 C
3 D
4 A
5 ABC
dtype: string
#全部转化成小写
test.str.lower()
#显示各字符串长度
test.str.len()
#结果
0 1
1 1
2 1
3 1
4 1
5 3
dtype: Int64
strip(),lstrip(),rstrip()实例:
test1 = pd.Index(['teacher ',' doctor ',' nurse','worker '])
#结果
Index(['teacher ', ' doctor ', ' nurse', 'worker '], dtype='object')
#去除两边空格
test1.str.strip()
#结果
Index(['teacher', 'doctor', 'nurse', 'worker'], dtype='object')
#仅去除左边空格
test1.str.lstrip()
#结果
Index(['teacher ', 'doctor ', 'nurse', 'worker '], dtype='object')
#仅去除右边空格
test1.str.rstrip()
#结果
Index(['teacher', ' doctor', ' nurse', 'worker'], dtype='object')
split()实例:
import numpy as np
s = pd.Series(["a_b_", "c_d_", np.nan, "e_f_"], dtype="string")
#结果
0 a_b_
1 c_d_
2 <NA>
3 e_f_
dtype: string
#以'_'切割字符串(会生成列表型)
s.str.split('_')
#结果
0 [a, b, ]
1 [c, d, ]
2 <NA>
3 [e, f, ]
dtype: object
cat()实例:
s = pd.Series(["a", "b", "c", "d"], dtype="string")
#将所有字符串串联起来
s.str.cat(sep=",")
#结果
'a,b,c,d'
s1 = pd.Series(['a','b',np.nan,'d'],dtype="string")
#将所有字符串串联起来(观察结果的不同)
s.str.cat(sep=",")
#结果
'a,b,d'
s1 = pd.Series(['a','b',np.nan,'d'],dtype="string")
#将所有字符串串联起来(缺失值用'-'表示)
s.str.cat(sep=',',na_rep='-')
#结果
'a,b,-,d'