通过上述神经网络,我们可以预测输入图像进行处理的最优分辨率,但选择哪个神经网络也是一个问题。通过查阅文献并且实际操作,我们得知了:
- ResNetV2 基于残差连接的设计,能够更好地学习图像的多尺度特征,从而提取出更丰富、更有效的特征表示。这有助于更准确地识别图像中的文字元素。
- ResNetV2 相比 VGG 等较早的模型,在同等或更高的精度下具有更高的计算效率。这对于将图像转换为 LaTeX 这种需要实时处理的任务来说非常重要。
- ResNetV2 在大规模数据集上进行预训练后,具有更强的泛化能力,能够更好地适应不同类型的图像,从而提高在 LaTeX 转换任务上的鲁棒性。
- ResNetV2 模型相比 DenseNet 等更复杂的模型,参数量和计算开销更小,更易于部署在实际应用中,特别是移动端和嵌入式设备上。
因为上述优点,同时结合我们对不同神经网络的不同效果,选择resnetv2作为最优化图片分辨率的神经网络。