基于情感词典的情感分析方法

该博客介绍了基于情感词典的情感分析方法,通过分词、识别情感词、否定词和程度副词,计算文本情感分值。情感分值正负表示情感极性,绝对值大小反映情绪强度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算用户情绪强弱性,对于每一个文本都可以得到一个情感分值,以情感分值的正负性表示情感极性,大于0为积极情绪,小于0反之,绝对值越大情绪越强烈。

基于情感词典的情感分析方法主要思路:

1、对文本进行分词,找出文本中的情感词、否定词以及程度副词;

2、判断每个情感词之前是否存在否定词及程度副词,将其与情感词分为文本中的一个组;

3、 如果情感词前有否定词则将情感词的情感权值乘以-1,如果有程度副词就乘以程度副词的程度值;

4、加和所有组的得分,积极情绪得分大于0、消极情绪得分小于0,绝对值越大情绪越强。 

参考文献:微热点(微舆情)官方网站(wrd.cn)-媒体传播大数据应用平台|热度指数|传播分析|口碑分析|微博情绪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值