数学建模之多元非线性回归

友情链接:
(1)使用MATLAB进行多元非线性回归——nlinfit函数的使用
https://blog.csdn.net/zhangyugebb/article/details/84770303

(2)MATLAB多元非线性回归
https://blog.csdn.net/lucky51222/article/details/42130523

(3)MATLAB实现多元非线性回归
https://blog.csdn.net/qq_42820064/article/details/86239033

一、使用MATLAB进行多元非线性回归——nlinfit函数的使用
https://blog.csdn.net/zhangyugebb/article/details/84770303

帮我对象做数据分析时遇到的问题,发现网上matlab多元非线性回归例子很少,写下来这篇用作参考

使用beta= nlinfit(x, y, model, beta0) 
——x为自变量,可以是多个自变量

——y为因变量,只能由一个

——model是函数模型

——beta0要求系数的初值

例子:
假定一个回归模型y = beta1*x1^3 + beta2*x2^2 + beta3*log2(x3)

其中beta1, beta2, beta3为想要通过回归得到的系数

Step1:建立回归模型

直接使用内联函数建立:

mymodel = inline('beta(1)*x(:,1).^3 + beta(2)*x(:,2).^2 + beta(3)*log2(x(:,3)','beta','x');

这里x(:1)是取x的第一列数据,相应的x(:,2)取第二列数据...

beta(1),beta(2),beta(3)为所求系数

Step2: 回归

x = [x1,x2,x3]; %自变量x1,x2,x3
beta0= [a1,b1,c1,d1,e1,f1,m1,n1,z1]; %系数初始值
beta = nlinfit(x,y,myfun,temp); %回归得到系数beta

二、MATLAB多元非线性回归
https://blog.csdn.net/lucky51222/article/details/42130523

解释变量:商品价格(x1)人均月收入(x2),被解释变量:商品需求量(y),进行二元回归分析,并进行检验  

在这里插入图片描述

Matlab代码:

clear
clc
data = [89	78	70	60	65	58	50	45	52	35	38
550	580	600	650	720	750	830	880	850	920	1100
5800	5000	6200	6800	7100	7800	8900	9000	8500	9400	9900
]';
x1 = data(:,1);
x2 = data(:,2);
y = data(:,3);
X = [ones(size(x1)) x1.*x1 x1 x2.*x2 x2 x1.*x2];
[b,bint] = regress(y,X)
scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):0.5:max(x1);
x2fit = min(x2):0.5:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1)+ b(2)*X1FIT.*X1FIT+b(3)*X1FIT + b(4)*X2FIT.*X2FIT + b(5)*X2FIT + b(6)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('x1')
ylabel('x2')
zlabel('Y')
view(140,30)
命令窗口:
b =

  1.0e+004 *

    8.4841
    0.0006
   -0.1486
    0.0000
   -0.0098
    0.0001


bint =

  1.0e+005 *

   -1.0110    2.7078
   -0.0001    0.0002
   -0.0443    0.0145
   -0.0000    0.0000
   -0.0036    0.0017
   -0.0000    0.0000

图形:
在这里插入图片描述

三、MATLAB实现多元非线性回归
https://blog.csdn.net/qq_42820064/article/details/86239033

简单多元非线性回归算例
现有以下数据

在这里插入图片描述
在这里插入图片描述

MATLAB代码如下

x1=[1.1 1 1.2 1.1 0.9]';
x2=[2 2 1.8 1.9 2.1]';
x3=[3.2 3.2 3 2.9 2.9]';
y=[10.1 10.2 10 10.1 10]';
G=[x1,x2,x3.^2];
z=G\y;

在这里插入图片描述

[beta,r]=nlinfit(X,y,myfun,beta0);

其中输入参数X是自变量,y是因变量,myfun 是函数模型,beta0是初始迭代系数向量,返回值beta是模型的系数向量,r是每个点的残差。

先定义myfun
function y=myfun(beta,x)
y=beta(1)*x(:,1)+beta(2)*x(:,2)+beta(3)*x(:,3).^2;

然后主程序
x1=[1.1 1 1.2 1.1 0.9]';
x2=[2 2 1.8 1.9 2.1]';
x3=[3.2 3.2 3 2.9 2.9]';
y=[10.1 10.2 10 10.1 10]';
X=[x1,x2,x3];
beta0=[1,1,1];
[beta,r]=nlinfit(X,y,'myfun',beta0);

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值