目录
1. 函数功能及语法介绍
2. 函数算法介绍
正文
1. 函数功能及语法介绍:该函数用来求解函数数值梯度,相当于数学上求导数。
(1)语法1:FX=gradient(F), 返回向量的一维数值梯度。输出FX对应于 ∂F/∂x,即在x(水平)方向上的差分。点之间的间距假定为1。
(2)语法2:[FX,FY]=gradient(F),返回矩阵F的二维数值梯度的x和y分量。输出FX和FY,分别对应 ∂F/∂x和∂F/∂y。每个方向上的点之间的间距假定为1。
(3)语法3:[FX,FY,FZ,...,FN]=gradient(F),返回F的数值梯度的N个分量,其中F是一个N维数组。
(4)语法4:[___]=gradient(F,h),使用h作为每个方向上的点之间的均匀间距。可以指定为任何数值。h会影响到返回的梯度结果,会对其进行缩放。可参考下述函数算法介绍。
(5)[___]=gradient(F,hx,hy,...,hN),为F的每个维度上的间距指定N个间距参数。
2. 函数算法介绍:直接进行举例说明,
(1) 代码如下
x=1:0.2:3;
y=2*x.^2+3
FX=gradient(y);
(2) 生成结果如下:
a. 其中,FX在计算矩阵边界值的梯度值时,比如第一个x(1)和y(1),和最后一个x(11)和y(11)对应的梯度时,算法如下:
FX(1)=y(2)-y(1)=5.88-5=0.88;
FX(11)=y(11)-y(10)=21-18.68=2.32;
b. 在进行矩阵中间值的梯度值时,算法如下:
FX(2)=0.5*(y(3)-y(1))=0.5*(6.92-5)=0.96;
c. 如果采用语法3进行梯度值求解,比如FX=gradient(y, 0.1);算法会在a和b情况中获得的结果进行放大10倍,及FX(1)=(y(2)-y(1))/0.1=8.8;
疑问:对于c这种情况下,这种对默认情况间距为1的梯度值进行放大10倍的意义是什么?想表达什么意思?