我的第一份latex试卷_Simplelife_新浪博客

\documentclass[11pt,a4paper]{article}
\usepackage[margin=2cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{CJKutf8}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ifthen}
\newlength{\la}
\newlength{\lb}
\newlength{\lc}
\newlength{\ld}
\newlength{\lhalf}
\newlength{\lquarter}
\newlength{\lmax}
\newcommand{\xx}[4]{\\[.5pt]%
  \settowidth{\la}{A.~#1~~~}
  \settowidth{\lb}{B.~#2~~~}
  \settowidth{\lc}{C.~#3~~~}
  \settowidth{\ld}{D.~#4~~~}
  \ifthenelse{\lengthtest{\la > \lb}}  {\setlength{\lmax}{\la}}  {\setlength{\lmax}{\lb}}
  \ifthenelse{\lengthtest{\lmax < \lc}}  {\setlength{\lmax}{\lc}}  {}
  \ifthenelse{\lengthtest{\lmax < \ld}}  {\setlength{\lmax}{\ld}}  {}
  \setlength{\lhalf}{0.5\linewidth}
  \setlength{\lquarter}{0.25\linewidth}
  \ifthenelse{\lengthtest{\lmax > \lhalf}}  {\noindent{}A.~#1 \\ B.~#2 \\ C.~#3 \\ D.~#4 }  {
  \ifthenelse{\lengthtest{\lmax > \lquarter}}  {\noindent\makebox[\lhalf][l]{A.~#1~~~}%
    \makebox[\lhalf][l]{B.~#2~~~}%
    \makebox[\lhalf][l]{C.~#3~~~}%
    \makebox[\lhalf][l]{D.~#4~~~}}%
    {\noindent\makebox[\lquarter][l]{A.~#1~~~}%
      \makebox[\lquarter][l]{B.~#2~~~}%
      \makebox[\lquarter][l]{C.~#3~~~}%
      \makebox[\lquarter][l]{D.~#4~~~}}}}
\newcommand{\tk}[1][2.5]{\,\underline{\mbox{\hspace{#1 cm}}}\,}
\begin{document}
\begin{CJK*}{UTF8}{gbsn}
\subsection*{\textit{4.5}}
\begin{enumerate}
        \item 在数列-1,0,$ \dfrac{1}{9} $,$ \dfrac{1}{8} $,\ldots,$ \frac{n-2}{n^2} $\ldots中,0.08是它的第几项\mbox{(\hspace{1cm})}
        \xx{100}{12}{10}{8}
        \item 已知数列\{$a_n$\}中,$ a_{n+1}=\frac{2a_n}{a_n+2} $,$ a_1 $=2,则$ a_5 $的值为\mbox{(\hspace{1cm})}
        \xx{$ \frac{2}{3} $}{$ \frac{1}{2} $}{$ \frac{2}{5} $}{$ \frac{1}{3} $}
        \item 已知等差数列\{$ a_n $\}中,$ a_3+a_6+a_{10}+a_{13}$=32,$a_m$=8,则m的值为\mbox{(\hspace{1cm})}
        \xx{8}{4}{6}{12}
        \item $ \textit{a}_n=\frac{n-\sqrt{98}}{n-\sqrt{99}} $,则这个数列的前30项和中最大项和最小项分别是
        \xx{$ \textit{a}_1,\textit{a}_{30} $}{$ \textit{a}_1,\textit{a}_9$}{$ \textit{a}_{10},\textit{a}_9 $}{$ \textit{a}_{10},\textit{a}_{30} $}
        \item 设等差数列\{$ a_n $\}的前\textit{n}项和为$ \textit{S}_\textit{n} $,已知$ (\textit{a}_4-1)^3+2007(\textit{a}_4-1)=1 $,$ (\textit{a}_{2004}-1)^3+2007(\textit{a}_{2004}-1)=-1 $,则下列结论中正确的是\mbox{(\hspace{1cm})}
        \\A.$ \textit{S}_{2007}=2007 $,$ \textit{a}_{2004}<\textit{a}_4 $\ \ \ \ B.$ \textit{S}_{2007}=2007 $,$ \textit{a}_{2004}>\textit{a}_4 $\\C.$ \textit{S}_{2007}=2008 $,$ \textit{a}_{2004}\leq\textit{a}_4 $\ \ \ \ D.$ \textit{S}_{2007}=2008 $,$ \textit{a}_{2004}\geq\textit{a}_4 $
 \item 已知等差数列$ \{\textit{a}_n\} $中,$ \textit{a}_3 $和$ \textit{a}_{15} $是方程$ \textit{x}^2-6\textit{x}-1=0 $的两个根,则$ \textit{a}_7+\textit{a}_8+\textit{a}_9+\textit{a}_{10}+\textit{a}_{11}= $\tk[3].
 \item 若数列\{$ a_n$ \},$ a_n=-n^2 $+$ \lambda $n为单调递减数列,则$ \lambda $取值范围是\tk[3].
 \item 已知等差数列$ \{\textit{a}_n\} $中,$ |\textit{a}_5|=|\textit{a}_9| $,公差$ d>0 $,则使得前\textit{n}项和$ \textit{S}_n $取得最小值时的正整数\textit{n}的值是\tk[3].
        \item 若数列\{n(n+4) $(\frac{2}{3})^n $\}中的最大项是第\textit{k}项,则\textit{k}=\tk[3].
        \item 设$ \{\textit{a}_n\} $是首项为1的正项数,且$ (n+1)\textit{a}_{n+1}^2-n\textit{a}_n^2+\textit{a}_{n+1}\textit{a}_n=0 (\textit{n}=1,2,3,\ldots)$,则它的通项公式是\tk[3].
        \item 记数列$ \{\textit{a}_n\} $的前\textit{n}项和为$ \textit{S}_n $,若$  3\textit{a}_{n+1}=3\textit{a}_n+2(n\in\textit{N}^*) $,$ \textit{a}_1+\textit{a}_3+\textit{a}_5+\ldots+ \textit{a}_{99}=90$,求$ \textit{S}_{100} $.\\\\\\\\
        \item 已知数列$\{ \textit{a}_n \}$满足$ \textit{a}_1=\frac{1}{2} $,$ \textit{a}_n\textit{a}_{n+1}=\textit{a}_{n+1}-\textit{a}_n $,求数列$ \{\textit{a}_n\} $的通项公式. \\\\\\\\
        \item 已知公差大于零的等差数列$\{ \textit{a}_n \}$的前\textit{n}项和为$ \textit{S}_n $,且满足:$ \textit{a}_3\textit{a}_4=117 $,$ \textit{a}_2+\textit{a}_5=22 $.
    \\(1)求数列$\{ \textit{a}_n \}$的通项公式$ \textit{a}_n $;
    \\(2)若数列$\{ \textit{b}_n \}$是等差数列,且$ \textit{b}_n=\frac{\textit{S}_n}{\textit{n}+\textit{C}} $,求非零常数\textit{C}. \\\\\\\\
        \item 已知数列$\{ \textit{a}_n \}$的首项$ \textit{a}_1=3 $,通项$ \textit{a}_n $与前\textit{n}项和$ \textit{S}_n $之间满足$ 2\textit{a}_n=\textit{S}_n\cdot\textit{S}_{n-1}(\textit{n}\geq2) $.
    \\(1)证明$ \{\frac{1}{\textit{S}_n}\} $是等差数列,并求公差;
    \\(2)求数列$\{ \textit{a}_n \}$的通项公式.
\end{enumerate}
\end{CJK*}
\end{document}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值