【十九】七类查找算法总结笔记

一、简介

查找定义

根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。

查找算法分类

1)静态查找和动态查找;

静态查找

只在数据元素集合中查找是否存在某个给定的数据元素。

无序查找:被查找数列有序无序均可。

有序查找:被查找数列必须为有序数列。

顺序查找、二分查找

索引结构

动态查找

除包括静态查找的要求外,还包括在查找过程中插入数据元素集合中不存在的数据元素,或者从数据元素集合中删除已存在的某个数据元素的要求。

二叉排序树(二叉查找树)

B_树

2)衡量查找算法的主要标准

平均查找长度(Average Search Length,ASL):查找过程所需进行的比较次数的平均值。

  对于含有n个数据元素的查找表,查找成功的平均查找长度为:

       ASL=\sum_{i=1}^{n}p_{i}c_{i} 
  Pi:查找表中第i个数据元素的概率。
  Ci:找到第i个数据元素时已经比较过的次数。

search method efficient conclusion

二、顺序查找

适合于存储结构为顺序存储或链接存储的线性表。

基本思想:

顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

复杂度分析

查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);

所以,顺序查找的时间复杂度为O(n)。

实现代码:

package com.sid.algorithm;

public class SequenceQuery {

    public static boolean SequenceSearch(int a[], int k, int value) {
        for (int i = 0; i < k; i++) {
            if (value == a[i])
                return true;
        }
        return false;

    }

    public static void main(String[] args) {
        int[] a = {8, 2, 4, 5, 3, 10, 11, 6, 9};
        System.out.println(SequenceSearch(a, a.length, 20));
    }

}

三、二分查找(折半查找)

元素必须是有序的,如果是无序的则要先进行排序操作。

基本思想:

也称折半查找,属于有序查找算法。

用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;

若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,

这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

复杂度分析:

最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);

注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。

实现代码:

package com.sid.algorithm;

public class BinarySearch1 {

    public static int binarysearch(int[] a, int n, int value) {
        int low = 0;
        int high = n - 1;
        int mid;
        while (low < high) {
            mid = (low + high) / 2;
            if (value < a[mid])
                high = mid - 1;
            if (value > a[mid])
                low = mid + 1;
            if (value == a[mid])
                return mid;
        }
        return -1;
    }

    public static void main(String[] args) {
//int[] a = {1,4,2,9,8,6,7,0,3,5}
        int[] a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
        System.out.println(binarysearch(a, a.length, 7));
    }
}
package com.sid.algorithm;

public class BinarySearch2 {
    
    public static int binarysearch(int[] a, int value, int low, int high) {
        int mid = (low + high) / 2;
        if (value == a[mid])
            return mid;
        mid = (low + high) / 2;
        if (value < a[mid])
            return binarysearch(a, value, low, mid - 1);
        if (value > a[mid])
            return binarysearch(a, value, mid + 1, high);
        return -1;
    }

    public static void main(String[] args) {
//int[] a = {1,4,2,9,8,6,7,0,3,5}
        int[] a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
        System.out.println(binarysearch(a, 4, 0, a.length - 1));
    }
}

3-1. 自适应的二分查找--------插值查找

在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?

比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。

经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。

        二分查找中查找点计算如下:

  mid=(low+high)/2, 即mid=low+1/2*(high-low);

  通过类比,我们可以将查找的点改进为如下:

  mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

  也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:

基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

复杂度分析:

查找成功或者失败的时间复杂度均为O(log2(log2n))。

实现代码:

package com.sid.algorithm;

public class InsertionSearch {
    
    public static int InsertionSearch(int[] a, int value, int low, int high) {
        int mid = low + (value - a[low]) / (a[high] - a[low]) * (high - low);
        if (a[mid] == value)
            return mid;
        if (a[mid] > value)
            return InsertionSearch(a, value, low, mid - 1);
        if (a[mid] < value)
            return InsertionSearch(a, value, mid + 1, high);
        return -1;
    }

    public static void main(String[] args) {
        int[] a = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
        System.out.println(InsertionSearch(a, 2, 0, a.length - 1));
    }
}

3-2 二分查找的另一个变种--------斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

基本思想:

也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
  相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:
  1)相等,mid位置的元素即为所求
  2)>,low=mid+1;
  3)<,high=mid-1。

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

1)相等,mid位置的元素即为所求

2)>,low=mid+1,k-=2;

说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

3)<,high=mid-1,k-=1。

说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

复杂度分析:

最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

四、树表查找

5.1 最简单的树表查找算法——二叉树查找算法。

基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。 

二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree)或者是一棵空树,或者是具有下列性质的二叉树:

  1)若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  2)若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  3)任意节点的左、右子树也分别为二叉查找树,即左<根<右。

二叉查找树性质对二叉查找树进行中序遍历,即可得到有序的数列。

不同形态的二叉查找树如下图所示:

复杂度分析:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。

基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。

代码:

三叉链结点类设计

package com.sid.model;

public class BiTreeNode {
    private BiTreeNode leftChild;
    private BiTreeNode rightChild;
    private BiTreeNode parent;
    public int data;

    BiTreeNode(){
        leftChild = null;
        rightChild = null;
    }

    BiTreeNode(int item){
        data = item;
        leftChild = null;
        rightChild = null;
    }

    BiTreeNode(int item, BiTreeNode left, BiTreeNode right){
        data = item;
        leftChild = left;
        rightChild = right;
    }

    public void setParent(BiTreeNode parent){
        this.parent = parent;
    }

    public BiTreeNode getParent(){
        return parent;
    }

    public void setLeftChild(BiTreeNode left){
        leftChild = left;
    }

    public void setRightChild(BiTreeNode right){
        rightChild = right;
    }

    public void setData(int data){
        this.data = data;
    }

    public BiTreeNode getLeft(){
        return leftChild;
    }

    public BiTreeNode getRight(){
        return rightChild;
    }

    public int getData(){
        return data;
    }
}

二叉排序树类

package com.sid.model;

public class BiSearchTree {

    private BiTreeNode root;

    public void BiSearchTree(){
        root = null;
    }

    public BiTreeNode getRoot() {
        return root;
    }

    public void setRoot(BiTreeNode root) {
        this.root = root;
    }

    //前序遍历
    public static void preOrder(BiTreeNode t, Traverse.Visit vs){
        if(t != null){
            vs.print(t);
            preOrder(t.getLeft(),vs);
            preOrder(t.getRight(),vs);
        }
    }

    //中序遍历
    public static void inOrder(BiTreeNode t, Traverse.Visit vs){
        if(t != null){
            inOrder(t.getLeft(),vs);
            vs.print(t);
            inOrder(t.getRight(),vs);
        }
    }

    //后序遍历
    public static void postOrder(BiTreeNode t, Traverse.Visit vs){
        if(t != null){
            postOrder(t.getLeft(),vs);
            postOrder(t.getRight(),vs);
            vs.print(t);
        }
    }

    public BiTreeNode getLeft(BiTreeNode current){           //取左孩子
        return current != null ? current.getLeft():null;
    }

    public BiTreeNode getRight(BiTreeNode current){            //取右孩子
        return current != null ? current.getRight():null;
    }

    public BiTreeNode find(int item){                //查找
        if(root != null){
            BiTreeNode temp = root;
            while(temp != null){
                if(temp.getData() == item ){
                    return temp;
                }
                if(temp.getData() < item) {
                    temp = temp.getRight();
                }else{
                    temp = temp.getLeft();
                }
            }
        }
        return null;
    }

    public void insert(BiTreeNode ptr,int item){                //插入
        if(item < ptr.getData()){
            if(ptr.getLeft() == null){
                BiTreeNode temp = new BiTreeNode(item);
                temp.setParent(ptr);
                ptr.setLeftChild(temp);
            }
            else insert(ptr.getLeft(),item);
        }
        else if(item > ptr.getData()){
            if(ptr.getRight() == null){
                BiTreeNode temp = new BiTreeNode(item);
                temp.setParent(ptr);
                ptr.setRightChild(temp);
            }else insert(ptr.getRight(),item);
        }
        return;
    }

    public void delete(BiTreeNode ptr,int item){     //删除
        if(ptr != null){
            if(item < ptr.getData()){
                delete(ptr.getLeft(),item);
            }else if(item > ptr.getData()){
                delete(ptr.getRight(),item);
            }else if(ptr.getLeft() != null && ptr.getRight() != null){
                BiTreeNode min;
                min = ptr.getRight();
                while (min.getLeft() != null){
                    min = min.getLeft();
                }
                ptr.setData(min.getData());
                delete(ptr.getRight(),min.getData());
            }else{
                if(ptr.getLeft() == null && ptr.getRight() != null){
                    ptr.getParent().setRightChild(ptr.getRight());
                    ptr.getRight().setParent(ptr.getParent());
                }
                else if(ptr.getRight() == null && ptr.getLeft() != null){
                    ptr.getParent().setLeftChild(ptr.getLeft());
                    ptr.getLeft().setParent(ptr.getParent());
                }
                else{
                    BiTreeNode p = ptr.getParent();
                    if(p.getLeft() == ptr){
                        p.setLeftChild(null);
                    }
                    else{
                        p.setRightChild(null);
                    }
                }
            }

        }
    }
}

5.2 平衡查找树之2-3查找树(2-3 Tree)

2-3查找树定义:和二叉树不一样,2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个子点。对应3节点(3-node),保存两个Key,和3个子节点的。2-3查找树的定义如下:

  1)要么为空,要么:

  2)对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。

  3)对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。

Definition of 2-3 tree

2-3查找树的性质:

  1)如果中序遍历2-3查找树,就可以得到排好序的序列;

  2)在一个完全平衡的2-3查找树中,根节点到每一个为空节点的距离都相同。(这也是平衡树中“平衡”一词的概念,根节点到叶节点的最长距离对应于查找算法的最坏情况,而平衡树中根节点到叶节点的距离都一样,最坏情况也具有对数复杂度。)

性质2)如下图所示:

 

复杂度分析:

  2-3树的查找效率与树的高度是息息相关的。

  • 在最坏的情况下,也就是所有的节点都是2-node节点,查找效率为lgN
  • 在最好的情况下,所有的节点都是3-node节点,查找效率为log3N约等于0.631lgN

  距离来说,对于1百万个节点的2-3树,树的高度为12-20之间,对于10亿个节点的2-3树,树的高度为18-30之间。

  对于插入来说,只需要常数次操作即可完成,因为他只需要修改与该节点关联的节点即可,不需要检查其他节点,所以效率和查找类似。

5.3 平衡查找树之红黑树(Red-Black Tree)

  2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。

  基本思想:红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同。

Red black tree

红黑树的定义:

红黑树是一种具有红色和黑色链接的平衡查找树,同时满足:

  • 红色节点向左倾斜
  • 一个节点不可能有两个红色链接
  • 整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同。

  下图可以看到红黑树其实是2-3树的另外一种表现形式:如果我们将红色的连线水平绘制,那么他链接的两个2-node节点就是2-3树中的一个3-node节点了。

 

红黑树的性质:整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同(2-3树的第2)性质,从根节点到叶子节点的距离都相等)。

复杂度分析:最坏的情况就是,红黑树中除了最左侧路径全部是由3-node节点组成,即红黑相间的路径长度是全黑路径长度的2倍。

下图是一个典型的红黑树,从中可以看到最长的路径(红黑相间的路径)是最短路径的2倍:

 a typic red black treea typic red black tree

红黑树的平均高度大约为logn。 

5.4 B树和B+树(B-Tree/B+ Tree)

平衡查找树中的2-3树以及其实现红黑树。2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key。

维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库文件系统

B-Tree

B树定义:

  B树可以看作是对2-3查找树的一种扩展,一个M阶的B树符合以下条件:

  • 1.根节点至少有2个孩子节点
  • 2.每个中间节点都包含k-1个元素k个孩子,其中 m/2 <= k <= m
  • 3.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m
  • 4.所有的叶子结点都位于同一层。
  • 5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

B树的阶数M表示一个节点最多可以有多少个孩子节点。比如3阶B树,那一个节点最多可以有3个孩子节点。2阶B树相当于平衡二叉查找树。

  下图是一个M=3 阶的B树:

B树插入:

 比如以上方图示例子为例,插入一个25

第三排第二个节点,已经有了2个元素,23和36了,不能再放元素进去了(3阶B树,每个节点内最多只能是3-1=2个元素)

向上找,它的父节点,第二排第一个节点,也有两个元素20和40了,不能再放元素进去了。

再向上找,它的父节点就是根节点,第一排第一个节点,里面只有一个元素,还能再放一个元素进去,把新增的25插入根节点,拆分节点23.36和节点20.40.使其符合(左边大于右边)最后变成:

B+树 

B Plus tree

在B树的基础上:

1.B+树包含2种类型的结点:内部结点(也称索引结点)和叶子结点。根结点本身即可以是内部结点,也可以是叶子结点。根结点的关键字个数最少可以只有1个。

2.有k个子结点的结点必然有k个关键码

3.B+树与B树最大的不同是内部结点不保存数据,只用于索引,MySQL的数据(或者说记录)都保存在叶子结点中。

4.每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字(MySQL表中建索引的那一列的值)的大小形成一个顺序链接

B+ 树的优点在于:

  • 由于B+树在内部节点上不好含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子几点上关联的数据也具有更好的缓存命中率。
  • B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。

 五、分块查找

分块查找又称索引顺序查找,它是顺序查找的一种改进方法。

算法思想:

将n个数据元素"按块有序"划分为m块(m ≤ n)。

每一块中的结点不必有序,但块与块之间必须"按块有序";

即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……

算法流程:

       - step1 先选取各块中的最大关键字构成一个索引表;

       - step2 查找分两个部分:先对索引表进行二分查找或顺序查找,以确定待查记录在哪一块中;然后,在已确定的块中用顺序法进行查找。 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值