openmetadata二次开发之前端汉化

目录

1.背景

1.1 设置默认的语言为中文,应该如何修改代码

1.2 将未做国际化的页面做汉化,应该如何修改代码

1.3 配置连接信息的指导教程,应该如何汉化

2. 设置默认的语言为中文

2.1 查看源码当前项目为react构建的项目,使用的国际化插件为react-i18next和i18next

2.2 修改语言为默认的中文

2.3 修改完的效果

3. 修改未国际化页面

3.1查找国际化页面位置,以mysql 连接信息配置页面为例

3.2 修改完效果

4. 修改右侧配置教程

 4.1 右侧文件描述

4.2 修改效果见3.2章节

5.小结


1.背景

openmetadata本身做了国际化的功能,但是不完全,作为国内用户当前希望是全中文是最好的,并且将其进行包装,作为交付的项目也需要做处理,下面我会分享三个点

1.1 设置默认的语言为中文,应该如何修改代码

1.2 将未做国际化的页面做汉化,应该如何修改代码

1.3 配置连接信息的指导教程,应该如何汉化

2. 设置默认的语言为中文

2.1 查看源码当前项目为react构建的项目,使用的国际化插件为react-i18next和i18next

import i18n from 'i18next';
import LanguageDetector from 'i18next-browser-languagedetector';
import { initReactI18next } from 'react-i18next';
import { getInitOptions } from './i18nextUtil';

// Initialize i18next (language)
i18n
  .use(LanguageDetector) // Detects system language
  .use(initReactI18next)
  .init(getInitOptions());

export default i18n;

2.2 修改语言为默认的中文


                
### 使用 Stable Diffusion 实现文本生成视频的方法 #### 创建环境准备 为了实现从文本到视频的转换,首先需要搭建合适的开发环境。对于初学者来说,可以利用已经配置好的 GPU 服务器镜像来简化前期准备工作[^3]。这类镜像不仅包含了必要的依赖库和工具链,还预装了多个流行的 AI 模型及其优化版本。 #### 安装与设置 具体而言,在获取访问权限之后,用户可以直接启动带有预先安装软件包的 Docker 镜像或云平台实例。这些资源通常会提供详细的文档指导使用者完成初步设定过程,比如通过命令行界面执行特定脚本来加载最新的模型权重文件以及调整参数以适应个人创作需求。 #### 利用现有框架 当一切就绪后,就可以着手探索 `stable-diffusion-videos` 这样的开源项目了[^2]。此项目的亮点在于它允许开发者通过对潜在空间(latent space)的研究来平滑过渡不同文字提示之间所对应的视觉效果变化序列,从而形成连贯流畅的画面流转。 ```bash # 克隆仓库并进入目录 git clone https://gitcode.com/gh_mirrors/st/stable-diffusion-videos.git cd stable-diffusion-videos/ # 安装依赖项 pip install -r requirements.txt # 下载预训练模型 python download_model.py # 启动服务端程序 python app.py ``` #### 开发流程概述 在此基础上,实际操作时一般遵循如下几个环节: - **输入处理**:接收来自用户的自然语言描述作为输入; - **特征提取**:将上述文本转化为适合喂给神经网络的形式; - **帧间插值**:依据前后两帧之间的差异计算中间状态,确保动作连续性; - **渲染输出**:最终合成完整的动画片段供查看下载。 值得注意的是,虽然整个过程中涉及到了不少技术细节,但是得益于社区贡献者们的努力,很多复杂的工作已经被封装进了易于调用的功能模块里去了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

10年JAVA大数据技术研究者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值