自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

大数据流动

公号 大数据流动 专注于大数据,实时计算,数据治理,数据可视化相关技术与应用。

  • 博客(340)
  • 资源 (56)
  • 收藏
  • 关注

原创 一小时搭建实时数据分析平台

实时数据分析门槛较高,我们如何用极少的开发工作就完成实时数据平台的搭建,做出炫酷的图表呢?如何快速的搭建实时数据分析平台,首先我们需要实时数据的接入端,我们选择高扩展性、容错性、速度极快的消息系统Kafka,而实时数据仓库,由于 Druid提供了非常方便快捷配置方式,如果不想编写负责的Flink和Spark代码,Druid绝对是一个不错的选择,有了数据仓库,我们必须需要一个可视化和交互式分析...

2020-04-28 15:39:13 2034

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 553

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 645

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 814

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 606

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 887

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 838

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 671

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 402

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 444

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 455

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 404

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 491

原创 GPT‑5.2 发布!正面对决 Gemini 3,一场正面交锋的开始

在更严格的 SWE‑Bench Verified 上,它的完成率甚至提升到 80% 左右——这意味着它在真实仓库里「打开问题、理解上下文、改代码、跑过测试」这一整套流水线,已经能独立搞定大部分。把 GPT‑5 的架构重启、GPT‑5.1 的对话与 Agent 体验,再加上这一次在推理、代码、长文本、视觉和数学上的「全面打磨」,统一成一个更像「生产级模型」的体系。对运营、财务、产品、工程这些天天对着仪表盘和报表的人来说,GPT‑5.2 更能从一个「描述图」的工具,变成「一起看盘」的搭档。

2025-12-12 09:18:30 522

原创 Dify 1.11.0 正式发布:多模态知识库上线,RAG 实战进入新阶段

在 Web 前端和运维层面,做了若干细节优化:包括暗色主题下的文字与提示显示、tooltip 行为一致性、小屏幕下文案可见性等,这些看似“界面小修修补补”,但对长时间用它做真实业务的人来说,会直接影响最终的交互体验。1.11.0 的重要变化,是让知识库天然支持「文本 + 图片」的混合内容,并且围绕这一能力打通了从导入、分块、向量化到查询的完整链路。简单理解:以前的知识库只“读文字说明书”,现在可以连文档里的截图、示意图一起理解,对那些 PPT、报表截图、系统配置截图很多的企业场景,会是一个质变级的升级。

2025-12-11 11:30:36 953

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 420

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 400

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 383

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 251

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 286

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 341

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 262

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 382

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 230

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 320

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 292

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 322

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 173

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 149

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 129

原创 Dify 入门系列(三):注入“灵魂” -> Dify 初始化与模型供应商配置

不管是国外的 GPT-4、Claude,还是国产的 DeepSeek、通义千问,甚至是你在本地跑的 Llama3,都能像插优盘一样“插”进来,统一管理。Dify 本身不生产大模型(LLM),它是一个“AI 应用开发与运营平台”(LLMOps),它的核心能力是“管理”和“编排”。对于“私有化部署”的我们来说,Key 就存在我们自己的服务器(的db 容器)里,数据 100% 在内网,非常安全。但是,它目前还只是一个“空壳子”。此时,如果你尝试“创建应用”,会发现“模型”那一栏是空的,什么也干不了。

2025-12-08 08:24:59 169

原创 Ollama入门宝典:从本地到云端,打造你的免费私有大模型

这意味着,你的 64GB 内存既是系统内存,也是显存!我将站在工程师的视角,手把手带你从零开始,用最硬核的方式玩转 Ollama,从本地部署到云端算力租赁,彻底告别 API 焦虑,为我们后续搭建 Dify 和 Agent 工作流打下最坚实的地桩。使用它们,可以显著提升模型的可管理性,将原本散乱的文件和脚本变成标准化的服务,极大地提高了我们的工作效率。这就好比 Docker 的镜像(Image),它把模型运行所需的一切都封装在了一起,从而实现了大模型的下载、启动和本地运行的自动化部署及推理流程。

2025-12-01 08:24:38 725

原创 Dify 入门系列(二):本地部署实战 —— 手把手教你用 Docker 启动 Dify

你应该能看到一个名为 docker 的组,里面包含 api-1、web-1、db-1 等好几个容器,它们的状态都必须是绿色的 Running。直接访问 github.com/langgenius/dify,点击绿色的 “Code” 按钮,然后选择 “Download ZIP”,下载后解压,效果一样。下一篇,将是本系列的高潮。我们不玩虚的,直接上“硬核”的,把它装到我们自己的电脑上。没有炫酷的图表,没有会写代码的 Agent,只有一个空空如也的“创建应用”按钮。我们需要的是 “站在巨人的肩膀上”。

2025-11-24 08:24:42 838

原创 谷歌王者归来:一文读懂 Gemini 3 Pro,终结 AI 混战的“六边形战士”

从只会聊天的 Chatbot,到拥有审美、能写界面、能独立规划任务、逻辑严密的“数字同事”,Gemini 3 Pro 确实让 Google 重新夺回了 AI 领域的王座。新 SOTA(当前最佳): 开发者反馈,它在调试复杂的编译器错误、重构代码且不破坏逻辑、甚至解决 λ-演算问题上,都建立了新的标准。对于程序员来说,它不再只是写写简单的 Python 脚本,而是能参与到复杂系统架构的真正的“结对编程”伙伴。以前的 AI 是你的百科全书,Gemini 3 Pro 是你那个能独立把活儿干完的实习生。

2025-11-19 09:37:09 786

原创 Dify 入门系列(一):Dify 是什么?一个大数据工程师的“AI 应用工厂”

由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的工作流,并同时提供了一套易用的界面和 API。创业,快速的将你的 AI 应用创意变成现实,无论成功和失败都需要加速。所有的数据(你的文档、你的数据库、你的模型 Key)100% 都在你自己的防火墙后面。它完美地站在了“大数据”和“大模型”的中间,用“私有化部署”解决了我们的安全焦虑,用“RAG”和“Agent”打通了我们的数据和服务。

2025-11-18 08:24:44 375

原创 2025年DeepSeek赋能数据分析报告(PPT 28页)

其大模型从 2023 年成立至今,不断迭代升级,如 2024 年发布的 DeepSeek-V2、V3 等,性能优越且性价比高,被硅谷同行誉为 “来自东方的神秘力量”。特别是本地部署方式,提供了针对不同规模和算力需求的模型选择,从个人部署的小规模蒸馏模型到企业级的大型模型,满足了不同用户的需求。此外,报告提到了 DeepSeek 与 Excel 的结合应用,借助 ChatExcel 及 OfficeAI 插件,用户可在 Excel 中方便地进行数据处理和分析,进一步拓展了其在数据分析领域的实用性。

2025-04-23 08:25:02 581

原创 DataHub 1.0:开启元数据管理的全新时代——全面支持现代数据栈的元数据平台正式发布!

随着数据治理需求的激增,开源元数据平台DataHub迎来了其里程碑式的1.0版本更新。DataHub 1.0将AI资产视为数据生态的一等公民,打破人为隔阂,让团队能在同一平台追踪从数据到AI的全流程。在Snowflake、BigQuery、Redshift、Databricks等平台中按数据库和模式层级浏览,结合数据所有者、领域、标签和术语表的筛选功能,快速定位目标数据。1.0版本的发布,标志着Datahub在开源元数据管理领域五年的卓越成就,同时开启了新一代数据目录与AI管理的新纪元。

2025-04-03 08:24:33 692

原创 支持DeepSeek R1模型直接查询资料!2025数据治理知识库+资料库开放加入!

目前已将我近几年收集的大量的资料上传,大部分相关问题都能找到答案,也希望能帮助大家深入理解和运用数据治理知识,学习大数据技术,跟上人工智能发展,为企业发展和个人成长赋能。近些年来,大数据、数据治理、人工智能不断发展,唯有不断学习才能跟上时代的脚步。我热爱学习,虽然年少时走了一些弯路,但在28岁的时候转行,从头开始踏上学习之路,也改变了自己的命运。一位曾经的港口煤炭工人,目前在某国企任大数据负责人,非全日制硕士在读,公众号大数据流动的作者。通过将资料上传知识库,我们可以直接跟知识库提问,获得想要的知识。

2025-03-28 08:24:23 588

原创 2025年数据治理CDMP认证考试开放报名!

大家好,我是独孤风,一位曾经的港口煤炭工人,如今在某国企担任大数据负责人,同时也是大数据流动的作者。在我的职业生涯中,我深刻感受到数字化转型对企业未来发展的重要性,而数据治理能力是其中的核心。这几年,数字化浪潮席卷全球,企业对数据治理和管理人才的需求愈发迫切。作为数据治理领域的权威认证,CDMP被视为数字化转型中的必备利器。近期,2025年CDMP认证考试的时间表已经正式对外公布,这无疑是所有关注...

2025-02-28 08:25:06 1232

原创 一文看懂《数据安全治理实践指南(4.0)》(附思维导图,附下载)

大家好,我是独孤风,大数据流动的作者。资料获取方式在文末。在数字化浪潮汹涌澎湃的当下,数据已成为企业乃至国家发展的核心资产,其重要性不言而喻。然而,随着数据的广泛应用和快速流转,数据安全问题也日益凸显,如同悬在头顶的达摩克利斯之剑,时刻威胁着企业的稳定运营和用户的隐私安全。在此背景下,《数据安全治理实践指南(4.0)》的发布犹如一场及时雨,为我们在数据安全治理的复杂迷宫中指明了方向。本文将基于白皮...

2025-01-21 08:24:48 1339 1

完整jar包资源,COULD NOT FIND fastjson,包缺失使用

打包找不到 fastjson COULD NOT FIND fastjson-1.2.68 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND AppleJavaExtensions,包缺失使用

打包找不到 AppleJavaExtensions COULD NOT FIND AppleJavaExtensions-1.4 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND jcommander,包缺失使用

打包找不到 jcommander COULD NOT FIND jcommander-1.30 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND jcommander,包缺失使用

打包找不到 jcommander COULD NOT FIND jcommander-1.48 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND high-scale-lib,包缺失使用

打包找不到 high-scale-lib COULD NOT FIND high-scale-lib-1.0.6 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND zkclient,包缺失使用

打包找不到 zkclient COULD NOT FIND zkclient-0.11 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND reporter-config,包缺失使用

打包找不到 reporter-config COULD NOT FIND reporter-config-2.1.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND reporter-config,包缺失使用

打包找不到 reporter-config COULD NOT FIND reporter-config3-3.0.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND colt,包缺失使用

打包找不到 colt COULD NOT FIND colt-1.2.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND zkclient,包缺失使用

打包找不到 zkclient COULD NOT FIND zkclient-0.8 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-hbase-compat-1.0-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-core-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND classworlds,包缺失使用

打包找不到 classworlds问题 COULD NOT FIND classworlds-1.1-alpha-2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND classworlds,包缺失使用

打包找不到 classworlds问题 COULD NOT FIND classworlds-1.1 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-api-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND cglib,包缺失使用

打包找不到 RING-CORES问题 COULD NOT FIND cglib:cglib-2.2.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-core,包缺失使用

打包找不到 logback-core问题 COULD NOT FIND logback-core:logback-core-1.1.3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-core,包缺失使用

打包找不到 logback-core问题 COULD NOT FIND logback-core:logback-core-1.1.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-classic,包缺失使用

打包找不到 logback-classic问题 COULD NOT FIND logback-classic:logback-classic-1.1.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-classic,包缺失使用

打包找不到 logback-classic问题 COULD NOT FIND logback-classic:logback-classic-1.1.3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

Minio入门宝典.pdf

开源对象存储方案 Minio入门宝典

2021-10-25

hadoop-aws-2.7.3.jar

hadoop-aws-2.7.3.jar,hadoop,spark查询oss对象存储包

2021-10-13

atlas 2.2.0源码包,apache-atlas-2.2.0-sources.tar.gz

atlas 2.2.0源码包,apache-atlas-2.2.0-sources.tar.gz,atlas是数据治理,元数据管理的老牌项目了,对于hive等hadoop的元数据管理都支持的比较好

2021-08-23

PyHive-0.6.4.tar.gz安装包,python连hive驱动

PyHive-0.6.4.tar.gz安装包

2021-09-03

apache-superset-1.3.0最新版本源码包

apache-superset-1.3.0最新版本源码包

2021-08-27

dbeaver最新包,21.1.5

连接mysql oracle hive 数据库工具

2021-08-27

instantclient-basiclite-linux.x64-21.3.0.0.0.zip

oracle client

2021-08-26

zookeeper全套包资源

zookeeper全套包资源

2021-08-25

cmake-3.2.3-Linux-x86_64.tar.Z

cmake-3.2.3-Linux-x86_64.tar.Z

2021-08-24

airflow python安装包,apache_airflow-2.1.2-py3-none-any.whl

airflow python安装包,apache_airflow-2.1.2-py3-none-any.whl

2021-08-18

airflow 2.1.0client 源码,apache-airflow-client-2.1.0-source.tar.gz

airflow 2.1.0client 源码,apache-airflow-client-2.1.0-source.tar.gz

2021-08-17

airflowclient的安装包 apache_airflow_client-2.1.0-py3-none-any.whl

airflow client 2.1.0,python pip安装包 apache_airflow_client-2.1.0-py3-none-any.whl

2021-08-16

apache-activemq-5.15.15二进制包,安装包

apache-activemq-5.15.15二进制包,安装包,apache-activemq-5.15.15-bin.tar.gz

2021-08-10

activemq 5.15.15源码包,源码包

activemq 5.15源码包

2021-08-10

activemq-5.16.2-源码包,源码包资源

activemq-parent-5.16.2-source-release.zip,activemq-5.16.2-源码包

2021-08-10

完整jar包资源,COULD NOT FIND metrics-core,包缺失使用

打包找不到 metrics-core COULD NOT FIND metrics-core-3.0.1 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-core,包缺失使用

打包找不到 metrics-core COULD NOT FIND metrics-core-3.0.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-ganglia,包缺失使用

打包找不到 metrics-ganglia COULD NOT FIND metrics-ganglia-3.0.0-BETA3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-graphite,包缺失使用

打包找不到 metrics-graphite COULD NOT FIND metrics-graphite-3.0.0-BETA3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND stream,包缺失使用

打包找不到 stream COULD NOT FIND stream-2.5.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除