- 博客(477)
- 资源 (56)
- 收藏
- 关注
原创 一小时搭建实时数据分析平台
实时数据分析门槛较高,我们如何用极少的开发工作就完成实时数据平台的搭建,做出炫酷的图表呢?如何快速的搭建实时数据分析平台,首先我们需要实时数据的接入端,我们选择高扩展性、容错性、速度极快的消息系统Kafka,而实时数据仓库,由于 Druid提供了非常方便快捷配置方式,如果不想编写负责的Flink和Spark代码,Druid绝对是一个不错的选择,有了数据仓库,我们必须需要一个可视化和交互式分析...
2020-04-28 15:39:13
2047
原创 Dify v1.12.0 与 v1.12.1重磅发布:引入摘要索引,让 RAG 检索告别“断章取义”
2026 年,AI 的竞争已经从“谁的模型大”转变为“谁的落地稳、谁的检索准”。Dify v1.12.x 系列通过摘要索引夯实了 RAG 的地基,通过 OTel 补齐了观测的短板。2026 年的过年前夕,Dify 团队就为我们送上了一份沉甸甸的“春节大礼”。在 RAG 实战中,我们经常遇到“断章取义”的问题:传统的向量检索依赖原始分段,当核心信息跨段分布时,AI 往往抓不住重点。对于我们这些追求“以数据为中心(Data-Centric)”的工程师来说,这不仅是功能升级,更是对数据治理思维的深度落地。
2026-02-05 08:39:50
477
原创 Dify 入门系列(六):从 Web 到 API交付与集成,打通 AI 落地的“最后一公里”
你甚至可以在“设置”里上传公司的Logo,修改背景颜色,让它看起来就像是公司专门找外包开发的产品。但是,现在有一个尴尬的问题: 这个超酷的AI助手,目前还被锁在Dify的“工厂”里。下一篇,我们将告别简单的 Chatbot,进入 Dify 最迷人的“画布”模式。在你的后端服务器里中转请求,保护 Key 的安全。:你嫌弃 Dify 自带的 UI 不好看,自己用 React 写个全新的界面,后台连 Dify。在上一篇教程中,我们已经在Dify的“工作室”里,用5分钟“组装”出了一个懂公司规范的。
2026-01-30 08:24:49
773
原创 国产开源企业级AI智能体平台——MaxKB入门宝典
这时候,你需要一个强大的AI应用平台。如果你已经在用 Dify,MaxKB,langchain等工具活框架做知识库、RAG 等Agent 应用,或者正准备学习AI工程化相关知识,肯定还会遇到一堆非常具体的工程问题。打开【知识库】页面,点击【创建知识库】,输入知识库名称、知识库描述、选择向量模型,并设置知识库类型为通用型,然后将离线文档通过拖拽方式或选择文件上传方式进行上传。知识库:创建和管理知识库,包括上传离线文档、Web 站点、飞书文档等,为问答对话提供知识来源,对知识进行统一管理,并助力智能问答。
2026-01-26 08:24:58
704
原创 <span class=“js_title_inner“>国产开源企业级AI智能体平台——MaxKB入门宝典</span>
这时候,你需要一个强大的AI应用平台。如果你已经在用 Dify,MaxKB,langchain等工具活框架做知识库、RAG 等Agent 应用,或者正准备学习AI工程化相关知识,肯定还会遇到一堆非常具体的工程问题。打开【知识库】页面,点击【创建知识库】,输入知识库名称、知识库描述、选择向量模型,并设置知识库类型为通用型,然后将离线文档通过拖拽方式或选择文件上传方式进行上传。知识库:创建和管理知识库,包括上传离线文档、Web 站点、飞书文档等,为问答对话提供知识来源,对知识进行统一管理,并助力智能问答。
2026-01-26 08:24:58
964
原创 Dify 入门系列(五):零代码打造第一个AI应用!用Dify快速搭建数据治理聊天助手
用户提问↓【第一阶段:检索(Retrieval)】AI立即冲进"数据治理专家知识库"用向量相似度算法,在几毫秒内找到最相关的5个文本块↓【第二阶段:增强(Augmentation)】把这些"真实文档片段"和"用户问题"一起打包↓【第三阶段:生成(Generation)】交给LLM(如DeepSeek)去"理解+组织+生成"↓最终答案 + 引用出处。到那时,你的"数据治理AI助手"就不再是"玩具",而是一个真正的"业务工具",被集成进公司的各个系统里,日均服务几百个员工的问询。现在,AI助手已经"发布"了。
2026-01-22 08:24:50
643
原创 <span class=“js_title_inner“>Dify 入门系列(五):零代码打造第一个AI应用!用Dify快速搭建数据治理聊天助手</span>
用户提问↓【第一阶段:检索(Retrieval)】AI立即冲进"数据治理专家知识库"用向量相似度算法,在几毫秒内找到最相关的5个文本块↓【第二阶段:增强(Augmentation)】把这些"真实文档片段"和"用户问题"一起打包↓【第三阶段:生成(Generation)】交给LLM(如DeepSeek)去"理解+组织+生成"↓最终答案 + 引用出处。到那时,你的"数据治理AI助手"就不再是"玩具",而是一个真正的"业务工具",被集成进公司的各个系统里,日均服务几百个员工的问询。现在,AI助手已经"发布"了。
2026-01-22 08:24:50
571
原创 Dify连续发布v1.11.3 与v1.11.4版本!RAG工程跃升,Node安全升级
Dify元旦后迅速发布了两个版本,原因很扎心:元旦前v1.11.2上线后GitHub Issues大量反馈——Weaviate数据丢、多语言崩、Function Calling 85%,在节后Dify进行了快速的更新,v1.11.3修复了其中问题,但由于Node安全问题,两天后又迅速发布了v1.11.4版本。症状:Chrome编辑LLM节点,Jinja变量弹窗点击无反应根因:DOM渲染逻辑,Monaco编辑器误判外部点击临时方案:a) 用Firefox开发b) 改用代码写变量(不用"/"触发弹窗)
2026-01-19 08:24:42
553
原创 让大模型拥有“MBTI人格”:evolving_personality 开源框架震撼发布!
想让同一个Agent在不同场景表现出不同风格(比如对VIP客户更权威、对普通用户更亲切),传统方法只能写多套Prompt,然后人工判断切换,成本极高且容易出错。特别值得一提的是,国产大模型表现出色,Qwen2.5的演化准确率超过90%,意味着团队可以摆脱对闭源模型的依赖,实现自主可控的人格Agent系统。过去两年,大模型Agent发展迅猛,但「人格设计」始终是最大短板。从此告别「GPT味儿」的千篇一律AI,让你的Agent真正拥有MBTI性格,还会随交互持续成长,变成用户的长期数字伙伴!
2026-01-16 08:24:29
308
原创 Dify v1.11.2 发布:2025 收官之作 —— 稳中求进,致敬 AI 工程化的一年
回顾这一年,Dify 从年初的 v1.0 时代,一路狂奔到了现在的 v1.11。我们见证了 Queue-based Graph Engine(队列图引擎) 的重构,迎来了 Trigger(触发器) 的自动化革命,也拥抱了多模态知识库 的视觉时代。2025 年,我们和 Dify 一起,把 AI 从 Python 脚本变成了可视化的工作流,从玩具 Demo 变成了生产力的工厂。年末是安全事故的高发期。虽然是“收官求稳”,但 v1.11.2 依然带来了几个非常实用的工程化特性,填补了企业级落地的最后几块拼图。
2025-12-29 08:24:44
966
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
585
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
670
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
854
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
564
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
909
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
857
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
692
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
420
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
514
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
713
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
678
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
778
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
637
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
434
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
394
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
360
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
750
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
495
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
820
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
511
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
673
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
440
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
409
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
493
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
811
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
307
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
788
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
332
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
437
原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库
这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。
2025-12-15 08:24:38
684
完整jar包资源,COULD NOT FIND fastjson,包缺失使用
2021-08-08
完整jar包资源,COULD NOT FIND AppleJavaExtensions,包缺失使用
2021-08-08
完整jar包资源,COULD NOT FIND jcommander,包缺失使用
2021-08-08
完整jar包资源,COULD NOT FIND jcommander,包缺失使用
2021-08-08
完整jar包资源,COULD NOT FIND high-scale-lib,包缺失使用
2021-08-08
完整jar包资源,COULD NOT FIND zkclient,包缺失使用
2021-08-07
完整jar包资源,COULD NOT FIND reporter-config,包缺失使用
2021-08-07
完整jar包资源,COULD NOT FIND reporter-config,包缺失使用
2021-08-07
完整jar包资源,COULD NOT FIND colt,包缺失使用
2021-08-07
完整jar包资源,COULD NOT FIND zkclient,包缺失使用
2021-08-07
完整jar包资源,COULD NOT FIND tephra,包缺失使用
2021-08-06
完整jar包资源,COULD NOT FIND tephra,包缺失使用
2021-08-06
完整jar包资源,COULD NOT FIND classworlds,包缺失使用
2021-08-06
完整jar包资源,COULD NOT FIND classworlds,包缺失使用
2021-08-06
完整jar包资源,COULD NOT FIND tephra,包缺失使用
2021-08-06
完整jar包资源,COULD NOT FIND cglib,包缺失使用
2021-08-05
完整jar包资源,COULD NOT FIND logback-core,包缺失使用
2021-08-05
完整jar包资源,COULD NOT FIND logback-core,包缺失使用
2021-08-05
完整jar包资源,COULD NOT FIND logback-classic,包缺失使用
2021-08-05
完整jar包资源,COULD NOT FIND logback-classic,包缺失使用
2021-08-05
atlas 2.2.0源码包,apache-atlas-2.2.0-sources.tar.gz
2021-08-23
airflow python安装包,apache_airflow-2.1.2-py3-none-any.whl
2021-08-18
airflow 2.1.0client 源码,apache-airflow-client-2.1.0-source.tar.gz
2021-08-17
airflowclient的安装包 apache_airflow_client-2.1.0-py3-none-any.whl
2021-08-16
apache-activemq-5.15.15二进制包,安装包
2021-08-10
完整jar包资源,COULD NOT FIND metrics-core,包缺失使用
2021-08-09
完整jar包资源,COULD NOT FIND metrics-core,包缺失使用
2021-08-09
完整jar包资源,COULD NOT FIND metrics-ganglia,包缺失使用
2021-08-09
完整jar包资源,COULD NOT FIND metrics-graphite,包缺失使用
2021-08-09
完整jar包资源,COULD NOT FIND stream,包缺失使用
2021-08-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅