自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

大数据流动

公号 大数据流动 专注于大数据,实时计算,数据治理,数据可视化相关技术与应用。

  • 博客(477)
  • 资源 (56)
  • 收藏
  • 关注

原创 一小时搭建实时数据分析平台

实时数据分析门槛较高,我们如何用极少的开发工作就完成实时数据平台的搭建,做出炫酷的图表呢?如何快速的搭建实时数据分析平台,首先我们需要实时数据的接入端,我们选择高扩展性、容错性、速度极快的消息系统Kafka,而实时数据仓库,由于 Druid提供了非常方便快捷配置方式,如果不想编写负责的Flink和Spark代码,Druid绝对是一个不错的选择,有了数据仓库,我们必须需要一个可视化和交互式分析...

2020-04-28 15:39:13 2047

原创 Dify v1.12.0 与 v1.12.1重磅发布:引入摘要索引,让 RAG 检索告别“断章取义”

2026 年,AI 的竞争已经从“谁的模型大”转变为“谁的落地稳、谁的检索准”。Dify v1.12.x 系列通过摘要索引夯实了 RAG 的地基,通过 OTel 补齐了观测的短板。2026 年的过年前夕,Dify 团队就为我们送上了一份沉甸甸的“春节大礼”。在 RAG 实战中,我们经常遇到“断章取义”的问题:传统的向量检索依赖原始分段,当核心信息跨段分布时,AI 往往抓不住重点。对于我们这些追求“以数据为中心(Data-Centric)”的工程师来说,这不仅是功能升级,更是对数据治理思维的深度落地。

2026-02-05 08:39:50 477

原创 Dify 入门系列(六):从 Web 到 API交付与集成,打通 AI 落地的“最后一公里”

你甚至可以在“设置”里上传公司的Logo,修改背景颜色,让它看起来就像是公司专门找外包开发的产品。但是,现在有一个尴尬的问题: 这个超酷的AI助手,目前还被锁在Dify的“工厂”里。下一篇,我们将告别简单的 Chatbot,进入 Dify 最迷人的“画布”模式。在你的后端服务器里中转请求,保护 Key 的安全。:你嫌弃 Dify 自带的 UI 不好看,自己用 React 写个全新的界面,后台连 Dify。在上一篇教程中,我们已经在Dify的“工作室”里,用5分钟“组装”出了一个懂公司规范的。

2026-01-30 08:24:49 773

原创 国产开源企业级AI智能体平台——MaxKB入门宝典

这时候,你需要一个强大的AI应用平台。如果你已经在用 Dify,MaxKB,langchain等工具活框架做知识库、RAG 等Agent 应用,或者正准备学习AI工程化相关知识,肯定还会遇到一堆非常具体的工程问题。打开【知识库】页面,点击【创建知识库】,输入知识库名称、知识库描述、选择向量模型,并设置知识库类型为通用型,然后将离线文档通过拖拽方式或选择文件上传方式进行上传。知识库:创建和管理知识库,包括上传离线文档、Web 站点、飞书文档等,为问答对话提供知识来源,对知识进行统一管理,并助力智能问答。

2026-01-26 08:24:58 704

原创 <span class=“js_title_inner“>国产开源企业级AI智能体平台——MaxKB入门宝典</span>

这时候,你需要一个强大的AI应用平台。如果你已经在用 Dify,MaxKB,langchain等工具活框架做知识库、RAG 等Agent 应用,或者正准备学习AI工程化相关知识,肯定还会遇到一堆非常具体的工程问题。打开【知识库】页面,点击【创建知识库】,输入知识库名称、知识库描述、选择向量模型,并设置知识库类型为通用型,然后将离线文档通过拖拽方式或选择文件上传方式进行上传。知识库:创建和管理知识库,包括上传离线文档、Web 站点、飞书文档等,为问答对话提供知识来源,对知识进行统一管理,并助力智能问答。

2026-01-26 08:24:58 964

原创 Dify 入门系列(五):零代码打造第一个AI应用!用Dify快速搭建数据治理聊天助手

用户提问↓【第一阶段:检索(Retrieval)】AI立即冲进"数据治理专家知识库"用向量相似度算法,在几毫秒内找到最相关的5个文本块↓【第二阶段:增强(Augmentation)】把这些"真实文档片段"和"用户问题"一起打包↓【第三阶段:生成(Generation)】交给LLM(如DeepSeek)去"理解+组织+生成"↓最终答案 + 引用出处。到那时,你的"数据治理AI助手"就不再是"玩具",而是一个真正的"业务工具",被集成进公司的各个系统里,日均服务几百个员工的问询。现在,AI助手已经"发布"了。

2026-01-22 08:24:50 643

原创 <span class=“js_title_inner“>Dify 入门系列(五):零代码打造第一个AI应用!用Dify快速搭建数据治理聊天助手</span>

用户提问↓【第一阶段:检索(Retrieval)】AI立即冲进"数据治理专家知识库"用向量相似度算法,在几毫秒内找到最相关的5个文本块↓【第二阶段:增强(Augmentation)】把这些"真实文档片段"和"用户问题"一起打包↓【第三阶段:生成(Generation)】交给LLM(如DeepSeek)去"理解+组织+生成"↓最终答案 + 引用出处。到那时,你的"数据治理AI助手"就不再是"玩具",而是一个真正的"业务工具",被集成进公司的各个系统里,日均服务几百个员工的问询。现在,AI助手已经"发布"了。

2026-01-22 08:24:50 571

原创 Dify连续发布v1.11.3 与v1.11.4版本!RAG工程跃升,Node安全升级

Dify元旦后迅速发布了两个版本,原因很扎心:元旦前v1.11.2上线后GitHub Issues大量反馈——Weaviate数据丢、多语言崩、Function Calling 85%,在节后Dify进行了快速的更新,v1.11.3修复了其中问题,但由于Node安全问题,两天后又迅速发布了v1.11.4版本。症状:Chrome编辑LLM节点,Jinja变量弹窗点击无反应根因:DOM渲染逻辑,Monaco编辑器误判外部点击临时方案:a) 用Firefox开发b) 改用代码写变量(不用"/"触发弹窗)

2026-01-19 08:24:42 553

原创 让大模型拥有“MBTI人格”:evolving_personality 开源框架震撼发布!

想让同一个Agent在不同场景表现出不同风格(比如对VIP客户更权威、对普通用户更亲切),传统方法只能写多套Prompt,然后人工判断切换,成本极高且容易出错。特别值得一提的是,国产大模型表现出色,Qwen2.5的演化准确率超过90%,意味着团队可以摆脱对闭源模型的依赖,实现自主可控的人格Agent系统。过去两年,大模型Agent发展迅猛,但「人格设计」始终是最大短板。从此告别「GPT味儿」的千篇一律AI,让你的Agent真正拥有MBTI性格,还会随交互持续成长,变成用户的长期数字伙伴!

2026-01-16 08:24:29 308

原创 Dify v1.11.2 发布:2025 收官之作 —— 稳中求进,致敬 AI 工程化的一年

回顾这一年,Dify 从年初的 v1.0 时代,一路狂奔到了现在的 v1.11。我们见证了 Queue-based Graph Engine(队列图引擎) 的重构,迎来了 Trigger(触发器) 的自动化革命,也拥抱了多模态知识库 的视觉时代。2025 年,我们和 Dify 一起,把 AI 从 Python 脚本变成了可视化的工作流,从玩具 Demo 变成了生产力的工厂。年末是安全事故的高发期。虽然是“收官求稳”,但 v1.11.2 依然带来了几个非常实用的工程化特性,填补了企业级落地的最后几块拼图。

2025-12-29 08:24:44 966

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 585

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 670

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 854

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 564

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 909

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 857

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 692

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 420

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 514

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 713

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 678

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 778

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 637

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 434

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 394

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 360

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 750

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 495

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 820

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 511

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 673

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 440

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 409

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 493

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 811

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 307

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 788

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 332

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 437

原创 Dify 入门系列(四):RAG 实战 -> 构建你的第一个“数据治理”知识库

这是我们大数据工程师的“本行”,用 AI 来学习我们自己的专业文档,没有比这更酷的了。这就是“文本分块”的“硬科学”。如果 Retrieval(检索)这一步返回的“原文”都是垃圾,那 Generation(生成)那一端的 LLM 再聪明,也是“垃圾进,垃圾出”。我们利用 Dify 的“知识库”产线,把“数据治理”这个专业领域的“私有知识”,成功“注入”到了 Dify 的向量库中。这是 Dify 的“杀手锏”实战,也是我们大数据工程师最关心的功能,是一个完美的、专业性极强的实战场景。当然Dify只是开始。

2025-12-15 08:24:38 684

完整jar包资源,COULD NOT FIND fastjson,包缺失使用

打包找不到 fastjson COULD NOT FIND fastjson-1.2.68 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND AppleJavaExtensions,包缺失使用

打包找不到 AppleJavaExtensions COULD NOT FIND AppleJavaExtensions-1.4 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND jcommander,包缺失使用

打包找不到 jcommander COULD NOT FIND jcommander-1.30 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND jcommander,包缺失使用

打包找不到 jcommander COULD NOT FIND jcommander-1.48 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND high-scale-lib,包缺失使用

打包找不到 high-scale-lib COULD NOT FIND high-scale-lib-1.0.6 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-08

完整jar包资源,COULD NOT FIND zkclient,包缺失使用

打包找不到 zkclient COULD NOT FIND zkclient-0.11 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND reporter-config,包缺失使用

打包找不到 reporter-config COULD NOT FIND reporter-config-2.1.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND reporter-config,包缺失使用

打包找不到 reporter-config COULD NOT FIND reporter-config3-3.0.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND colt,包缺失使用

打包找不到 colt COULD NOT FIND colt-1.2.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND zkclient,包缺失使用

打包找不到 zkclient COULD NOT FIND zkclient-0.8 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-07

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-hbase-compat-1.0-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-core-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND classworlds,包缺失使用

打包找不到 classworlds问题 COULD NOT FIND classworlds-1.1-alpha-2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND classworlds,包缺失使用

打包找不到 classworlds问题 COULD NOT FIND classworlds-1.1 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND tephra,包缺失使用

打包找不到 tephra COULD NOT FIND tephra-api-0.6.0 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-06

完整jar包资源,COULD NOT FIND cglib,包缺失使用

打包找不到 RING-CORES问题 COULD NOT FIND cglib:cglib-2.2.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-core,包缺失使用

打包找不到 logback-core问题 COULD NOT FIND logback-core:logback-core-1.1.3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-core,包缺失使用

打包找不到 logback-core问题 COULD NOT FIND logback-core:logback-core-1.1.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-classic,包缺失使用

打包找不到 logback-classic问题 COULD NOT FIND logback-classic:logback-classic-1.1.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

完整jar包资源,COULD NOT FIND logback-classic,包缺失使用

打包找不到 logback-classic问题 COULD NOT FIND logback-classic:logback-classic-1.1.3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-05

Minio入门宝典.pdf

开源对象存储方案 Minio入门宝典

2021-10-25

hadoop-aws-2.7.3.jar

hadoop-aws-2.7.3.jar,hadoop,spark查询oss对象存储包

2021-10-13

atlas 2.2.0源码包,apache-atlas-2.2.0-sources.tar.gz

atlas 2.2.0源码包,apache-atlas-2.2.0-sources.tar.gz,atlas是数据治理,元数据管理的老牌项目了,对于hive等hadoop的元数据管理都支持的比较好

2021-08-23

PyHive-0.6.4.tar.gz安装包,python连hive驱动

PyHive-0.6.4.tar.gz安装包

2021-09-03

apache-superset-1.3.0最新版本源码包

apache-superset-1.3.0最新版本源码包

2021-08-27

dbeaver最新包,21.1.5

连接mysql oracle hive 数据库工具

2021-08-27

instantclient-basiclite-linux.x64-21.3.0.0.0.zip

oracle client

2021-08-26

zookeeper全套包资源

zookeeper全套包资源

2021-08-25

cmake-3.2.3-Linux-x86_64.tar.Z

cmake-3.2.3-Linux-x86_64.tar.Z

2021-08-24

airflow python安装包,apache_airflow-2.1.2-py3-none-any.whl

airflow python安装包,apache_airflow-2.1.2-py3-none-any.whl

2021-08-18

airflow 2.1.0client 源码,apache-airflow-client-2.1.0-source.tar.gz

airflow 2.1.0client 源码,apache-airflow-client-2.1.0-source.tar.gz

2021-08-17

airflowclient的安装包 apache_airflow_client-2.1.0-py3-none-any.whl

airflow client 2.1.0,python pip安装包 apache_airflow_client-2.1.0-py3-none-any.whl

2021-08-16

apache-activemq-5.15.15二进制包,安装包

apache-activemq-5.15.15二进制包,安装包,apache-activemq-5.15.15-bin.tar.gz

2021-08-10

activemq 5.15.15源码包,源码包

activemq 5.15源码包

2021-08-10

activemq-5.16.2-源码包,源码包资源

activemq-parent-5.16.2-source-release.zip,activemq-5.16.2-源码包

2021-08-10

完整jar包资源,COULD NOT FIND metrics-core,包缺失使用

打包找不到 metrics-core COULD NOT FIND metrics-core-3.0.1 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-core,包缺失使用

打包找不到 metrics-core COULD NOT FIND metrics-core-3.0.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-ganglia,包缺失使用

打包找不到 metrics-ganglia COULD NOT FIND metrics-ganglia-3.0.0-BETA3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND metrics-graphite,包缺失使用

打包找不到 metrics-graphite COULD NOT FIND metrics-graphite-3.0.0-BETA3 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

完整jar包资源,COULD NOT FIND stream,包缺失使用

打包找不到 stream COULD NOT FIND stream-2.5.2 解压后将jar包与pom文件都放在.m2\repository指定路径下

2021-08-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除