梯度下降Python实现
如何让孩子爱上机器学习?1. 梯度gradient f : ▽f = ( ∂f/∂x, ∂f/∂x, ∂f/∂x )a) 这是一个向量b) 偏导和普通导数的区别就在于对x求偏导的时候,把y z 看成是常数 (对y求偏导就把x z 看成是常数)梯度方向其实就是函数增长方向最快的地方,梯度的大小代表了这个速率究竟有多大,因此在迭代的过程中,我们有两种选择:向着梯度方向前进->梯度上升向着...
转载
2018-03-26 13:57:13 ·
1356 阅读 ·
0 评论