numpy中choose用法

本文详细介绍了 numpy 中的 np.choose 函数,该函数可以根据索引数组 a 的值从 choices 列表中选择相应的元素。文章通过两个实例展示了如何应用于 list 和 np.array 类型的数据,并解释了不同 mode 参数的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

np.choose(a, choices, out=None, mode='raise'):按照序号a对choices中的数进行选择。

a: index array,其中的数必须是整数

mode=‘raise’,表示a中数必须在[0,n-1]范围内

mode=‘wrap’,a中数可以是任意的整数(signed),对n取余映射到[0,n-1]范围内

mode='clip',a中数可以是任意的整数(signed),负数映射为0,大于n-1的数映射为n-1


Example 1:

来自np.choose官方文档的例子,对list进行choose:

a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
choices = [-10, 10]
np.choose(a, choices)
array([[ 10, -10,  10],
       [-10,  10, -10],
       [ 10, -10,  10]])
Example 2:
除了可以用于list,choose还可以用于np.array类型。
在机器学习中,通常a每行为一个sample,列数代表不同的feature。index中保存每个sample需要选出feature的序号。
那么可以通过以下操作在a中选出所有sample的目标feature:

a = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
index = np.array([0,2,1,0])
np.choose(index,a.T)
array([ 1,  6,  8, 10])



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值