无重复字符的最长子串的长度
问题描述:给定一个字符串,求出其中不含重复字符的最长字串的长度
简单粗暴的方法就不介绍了,这里主要使用HashSet跟HashMap进行寻找的思路。
HashSet的话因为没有键值索引,所以需要进行一个增删操作,执行循环判断当前字符是否存在,如果不存在就将它加入并更新最大长度,否则删除该字符;
代码如下
public int lengthOfLongestSubstring(String s) {
int ans=0,n=s.length();
HastSet<Character> set =new HashSet<>();
int i=0,j=0;
while(i<n&&j<n){
if(!set.contains(s.charAt(i))){
set.add(s.charAt(i++));
ans=Math.max(ans,i-j);
}
else
set.remove(s.charAt(j++));
}
return ans;
}
HashMap因为有键值索引,所以我们只需要进行判断该字符是否已存在,如果存在就将该索引更新到更靠右的那个值,再继续更新长度。
代码如下:
```java
public int lengthOfLongestSubstring(String s) {
HashMap<Character,Integer> map=new HashMap<>();
int ans=0,len=s.length();
for(int i=0,j=0;j<len;j++){
if(map.containsKey(s.charAt(j)))
i=Math.max(map.get(s.charAt(j)),i);//i是被动更新,当且仅当查询到相同字符时
ans=Math.max(ans,j-i+1);
map.put(s.charAt(j),j+1);
}
return ans;
}
最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
因为这些题是最早开始刷的,拿到题的第一想法都是直接开始for循环遍历解决,也就是俗称的暴力法,之后开始思考优化方法,在这里着重写一下中心扩散算法求解。
暴力法实现
public boolean isPalindromic(String s) {
int len = s.length();
for (int i = 0; i < len / 2; i++) {
if (s.charAt(i) != s.charAt(len - i - 1)) {
return false;
}
}
return true;
}
// 暴力解法
public String longestPalindrome(String s) {
String ans = "";
int max = 0;
int len = s.length();
for (int i = 0; i < len; i++)
for (int j = i + 1; j <= len; j++) {
String test = s.substring(i, j);
if (isPalindromic(test) && test.length() > max) {
ans = s.substring(i, j);
max = Math.max(max, ans.length());
}
}
return ans;
}
中心扩散法
回文串它是中心对称的,所以我们可以考虑直接从某一个字符开始向两边扩充比较,判断左右字符是否相等即可。
public String longestPalindrome(String s) {
if(s.length()==0)
return "";
if(s.length()==1)
return s;
int left=0,right=0;
int len=1;//记录回文子串长度
int sLen=s.length();
int maxLen=0;//存储最大长度
int maxStart=0;
for(int i=0;i<sLen;i++){
left=i-1;
right=i+1;
while(left>=0&&s.charAt(i)==s.charAt(left)){//判断左相邻字符是否相等
left--;
len++;
}
while(right<sLen&&s.charAt(i)==s.charAt(right)){//判断右相邻字符是否相等
right++;
len++;
}
while(left>=0&&right<sLen&&s.charAt(left)==s.charAt(right)){//判断左右两边字符是否相等
left--;
right++;
len+=2;
}
if(len>maxLen){
maxLen=len;
maxStart=left;//最长回文子串的起始索引位置
}
len=1;//执行下一次循环时需要重置len值
}
return s.substring(maxStart + 1, maxStart + maxLen + 1);
}