在conda虚拟环境中安装cuda11.3

花了将近一天,显卡是RTX3050

  1. 首先升级显卡驱动,从 这个软件中更新显卡驱动
  2. 实在装了好多遍还是不行的话,建议先卸载掉anaconda,然后下载最新版的anaconda
  3. 下载完后,进入到中,创建虚拟环境,运行如下指令
    conda create -n 环境名称 python=3.X 
  4. conda activate 环境名称#进入到虚拟环境

  5. 下载提速的话,就用清华源,运行下面的代码,先替换channel,运行6的代码之前先运行下面代码恢复默认源
    conda config --remove-key channels
    

    运行6.的代码

  6. conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    conda config --set show_channel_urls yes
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    
  7. 进入pytorch官网PyTorch
  8. 如果运行8.的指令提示要升级conda版本的话,就先根据所给的指令升级conda的版本
  9. 整个环境忙活了一天,哎!

 

 

### 如何在虚拟机或虚拟化环境中安装配置 CUDA #### 背景说明 通常情况下,在普通的虚拟机环境中安装 CUDA 和 cuDNN 是不可行的,因为大多数虚拟机软件(如 VirtualBox 或 VMware Workstation)不支持 GPU 的完全硬件加速功能。这使得虚拟机无法识别主机的真实显卡型号,从而导致 CUDA 安装失败[^1]。 然而,通过特定的技术手段(如 GPU 直通技术),可以实现在某些高级虚拟化平台上的 CUDA 配置和支持。以下是详细的解决方案: --- #### 方法一:使用 GPU 直通技术 对于支持 GPU 直通的虚拟化平台(如 VMware vSphere 或 Proxmox VE),可以通过以下步骤完成 CUDA安装和配置: 1. **启用 GPU 直通** - 确保宿主机已正确配置并启用了 IOMMU 功能。 - 将物理 GPU 映射至目标虚拟机中,使虚拟机能直接访问真实的 GPU 设备[^3]。 2. **验证 GPU 是否可用** - 登录到虚拟机后,执行 `nvidia-smi` 命令以确认 GPU 已被正确识别。 ```bash nvidia-smi ``` 3. **下载并安装 CUDA Toolkit** - 下载适用于当前系统的 CUDA 版本安装包。 ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 ``` - 添加 NVIDIA 的官方仓库并更新系统索引。 ```bash sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /" sudo apt-get update sudo apt-get install -y cuda ``` 4. **设置环境变量** - 修改用户的 `.bashrc` 文件或者全局 `/etc/profile.d/` 中的相关脚本,添加如下路径: ```bash export PATH=/usr/local/cuda-11.4/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` 5. **安装 cuDNN 库** - 解压 cuDNN 文件并将其中的内容复制到对应的 CUDA 目录下。 ```bash tar -xzvf cudnn-11.4-linux-x64-v8.2.2.26.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` --- #### 方法二:Conda 虚拟环境中的 CUDA 安装 如果仅需在 Conda 虚拟环境中运行 PyTorch 或 TensorFlow 类似框架而无需依赖本地 GPU 加速,则可以直接利用 Conda 来管理 CUDA 依赖项: 1. 创建一个新的 Conda 环境并激活它。 ```bash conda create -n myenv python=3.9 conda activate myenv ``` 2. 使用 Conda 安装指定版本的 CUDA 支持库。 ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 此方法适合于那些只需要模拟 CUDA 行为而不涉及实际 GPU 计算的任务场景[^2]。 --- #### 注意事项 - 如果尝试在不具备 GPU 直通能力的标准桌面级虚拟机上部署 CUDA,可能会遭遇兼容性和性能瓶颈等问题。 - 对于生产用途建议考虑双操作系统或多节点集群架构作为替代方案来充分利用硬件资源。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑建宇Jy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值