python学习系列---斐波那契数列的多种实现

本文探讨了斐波那契数列的多种Python实现方式,包括使用列表缓存和字典缓存的递归方法,以及迭代和生成器的优化方案。通过装饰器计算运行时间,展示了迭代和生成器在处理大量计算时的高效性能,特别是生成器在节省内存的同时,显著提升了计算速度。
摘要由CSDN通过智能技术生成
在编程学习中,以简单而直观的递归方式实现斐波那契数列是大多数编程人员学习递归的经典例子。用递归实现的程序逻辑清晰,但由于速度很慢,在实际工程中较少用到。本文从纯粹学习的角度,通过结合递归,装饰器,生成器等语法,比较了python中各种实现斐波那契数列的方法以及它们的运行速度,从而体会python语言的使用。


1. 斐波那契数列的普通版实现:
def fib_recu(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)


def do_fib_recu(num):
    return fib_recu(num)


用一个计算时间的装饰器来重新包装该函数:

#Time calculator
def time_calc(func):
    def inner(n):
        start = time.time()
        result = func(n)
        end = time.time()
        print end, start, end - start
        return result
    return inner

@time_calc
def do_fib_recu(num):
    return fib_recu(num)

来看下它的运行速度:

Start Time:  1507847452.72
End Time:  1507847453.13
Total elapsed time:  0.409436941147
Total running counts:  30
End value: 832040

计算30个斐波那契数用时0.4秒,而计算次数增加到50次时,我的虚拟机就要花几分钟时间才能算出来了,可见其速度之慢。


2. 使用普通递归方法速度慢的原因显而易见,因为每次计算一个值的时候都要重复计算它前面的两个值,而前面的值其实已经计算过了。这时我们想到一个方法,能不能把前面计算过的值缓存起来,下次就不用再重新计算了,这样为求元素只要将前面的两个元素相加即可。python中最直接可选的缓存方法是列表和字典。

2.1 列表缓存装饰器

#Cache decorator of list version
C = []
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值