在编程学习中,以简单而直观的递归方式实现斐波那契数列是大多数编程人员学习递归的经典例子。用递归实现的程序逻辑清晰,但由于速度很慢,在实际工程中较少用到。本文从纯粹学习的角度,通过结合递归,装饰器,生成器等语法,比较了python中各种实现斐波那契数列的方法以及它们的运行速度,从而体会python语言的使用。
2. 使用普通递归方法速度慢的原因显而易见,因为每次计算一个值的时候都要重复计算它前面的两个值,而前面的值其实已经计算过了。这时我们想到一个方法,能不能把前面计算过的值缓存起来,下次就不用再重新计算了,这样为求元素只要将前面的两个元素相加即可。python中最直接可选的缓存方法是列表和字典。
1. 斐波那契数列的普通版实现:
用一个计算时间的装饰器来重新包装该函数:
来看下它的运行速度:
计算30个斐波那契数用时0.4秒,而计算次数增加到50次时,我的虚拟机就要花几分钟时间才能算出来了,可见其速度之慢。
2. 使用普通递归方法速度慢的原因显而易见,因为每次计算一个值的时候都要重复计算它前面的两个值,而前面的值其实已经计算过了。这时我们想到一个方法,能不能把前面计算过的值缓存起来,下次就不用再重新计算了,这样为求元素只要将前面的两个元素相加即可。python中最直接可选的缓存方法是列表和字典。
2.1 列表缓存装饰器