Ural 1204. Idempotents 扩展欧几里得算法

1204. Idempotents

Time limit: 1.0 second
Memory limit: 64 MB
The number  x is called an idempotent modulo  n if
x* x =  x (mod  n)
Write the program to find all idempotents modulo  n, where  n is a product of two distinct primes  pand  q.

Input

First line contains the number  k of test cases to consider (1 ≤  k ≤ 1000). Each of the following  klines contains one number  n < 10 9 .

Output

Write on the  i-th line all idempotents of  i-th test case in increasing order. Only nonnegative solutions bounded by  n should be printed.

Sample

input output
3
6
15
910186311
0 1 3 4
0 1 6 10
0 1 303395437 606790875
Problem Author: Pavel Atnashev
Problem Source: USU Internal Contest, March 2002

扩展欧几里得算法欧几里得算法(又叫辗转相除法)的扩展。除了计算a、b两个整数的最大公约数,此算法还能找到整数x、y(其中一个很可能是负数),使它们满足贝祖定理ax + by = \gcd(a, b).

通常谈到最大公因子时, 我们都会提到一个非常基本的事实: 给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b)[1]

有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。

int exGcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a; //---很难找出一个这么实现的价值,因为扩展欧几里得还有更大的用途;个人认为定义全局数组更好,不用return r。
    }
    int r = exGcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - a / b * y;
    return r;
}

对于方程:x^2≡x(mod n)(n=p*q,p,q为两个不同的质数)

必定有解,且必为4个解(0,1(特解),px,qy,(0<x<q,0<y<p))。

#include<iostream>
#include<cstdio>
using namespace std;
int n,x,y;
bool pr[1000000];
int arr[10000],p,q;
int exGcd(int a,int b,int &x,int &y)
{
    int gcd,tmp;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
    {
        gcd=exGcd(b,a%b,x,y);
        tmp=x;
        x=y;
        y=tmp-(a/b)*y;
    }
    return gcd;
}
int main()
{
    int tes;
    int i,j;
    for(i=2; i<=100000; i++)
    {
        if(pr[i]==0)
        {
            arr[++arr[0]]=i;
        }
        for(j=1; j<=arr[0]&&arr[j]*i<=100000; j++)
        {
            pr[i*arr[j]]=1;
            if(i%arr[j]==0)
                break;
        }
    }
    scanf("%d",&tes);
    while(tes--)
    {
        scanf("%d",&n);
        for(i=1; i<=arr[0]; i++)
        {
            if(n%arr[i]==0)
            {
                p=arr[i];
                q=n/p;
                break;
            }
        }
        exGcd(p,q,x,y);
        if(x>0)
        {
            while(x-q>0)
            {
                x-=q;
            }
        }
        if(x<0)
        {
            while(x<0)
            {
                x+=q;
            }
        }
        int xx=x*p;
        exGcd(q,p,x,y);
        if(x>0)
        {
            while(x-p>0)
            {
                x-=p;
            }
        }
        if(x<0)
        {
            while(x<0)
            {
                x+=p;
            }
        }
        int yy=x*q;
        printf("0 1 ");
        if(xx>yy)
            printf("%d %d\n",yy,xx);
        else
            printf("%d %d\n",xx,yy);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值