文章笔记:Active Learning for Delineation of Curvilinear Structures

文章来源: Mosinska A, Sznitman R, Głowacki P, et al. Active learning for delineation of curvilinear structures[J]. arXiv preprint arXiv:1512.00747, 2015.
PS: 同年的ICCV会议文章

简介

相比于传统的主动学习算法,本文特别针对于管状结构的标注问题,构建graph图结构以特别考虑查询样本时的空间邻域的问题,设计了一种新颖的 Sampling Strategy。而且以 Batch-mode 的方式查询样本并结合 representativeness 和 diversity 以最大程度的减少分割标注量。

背景简述

分割标注和分类标注的区别:

图像分类标注在于 Image-level,即一张图像给一个标注;
图像分割又被称为 dense prediction,最终目标在于给图像域中每个像素点对应的标注 Pixel-level;因此不可避免的需要在图像分割标注的时不仅仅需要考虑单个像素点的特征(灰度,纹理等),也需要考虑其空间邻域特性(简而言之就是相近的点具有较大可能有同样的标签)。
这里写图片描述

Active learning 的现状:

目前主动学习主要应用于Natural Language Processing,Computer Vision 和 Bioinformatics 等领域,而且往往集中于分类问题,并没有考虑在图像分割问题中的重要问题:图像邻域的关系。而且对于特定的 Curvilinear Structures 的问题也没有特定的考量。

缺陷:

在分割问题中,查询策略并不能达到最有效率。如何高效地查询分割 Label 成了一个很重要的问题。

方法

Uncertainty Sampling:

这里写图片描述
上式是 Shanno Entropy 的定义,即通过寻找最大的熵值来找到预测概率为0.5的样本,并认为这类样本是最不确定的样本。自然也可以想到,这些样本一般都是靠近分类面的,通过标注这些样本去训练模型,能够很好的改善分类面的形状。
但是可以想象到的是,若分类面距离 groud-truth 比较远的话,uncertainty sampling 查询的结果很容易找到 Outlier,因此还需要更多种的查询策略。在本文中采用的是 Density-based Batch Query
这个问题也可以参见我很久之前的一篇博客:
https://blog.csdn.net/JYZhang_CVML/article/details/61933537

Probability Propagation

上面的概率是通过分类器得到的,仅仅考虑了单个像素的特征,忽略邻域内的空间纹理信息。一种很自然的想法,相近的连续像素具有更大的可能被标记成相同标签,如果标记成不同的标签则这个也是一种 uncertain 的表现。
因此本篇文章的贡献在于采用 semi-supervised learning 的方法进行所谓概率传递,在传递的过程中自然而然的就结合了邻域的信息,因此改善了传统主动学习算法查询样本时的缺陷。
这里写图片描述
在将概率传递之后的得到的新的概率计算 Shanno Entropy,以做为新的 Entropy。

总结

简单而言,文章的最大亮点在于如何将空间邻域信息融合到 Querying Strategy 当中,使得查询样本不仅仅只考虑分割模型的概率输出,而且还要考虑邻域的关系。这样使得查询策略就更加有效。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值