原帖链接:http://blog.sina.com.cn/s/blog_5c5bc9070100y4zv.html
快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
快速排序是一种不稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-Conquer Method)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
以一个数组作为示例,取区间第一个数为基准数。
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
72 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 48 | 85 |
初始时,i = 0;
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++;
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 88 | 60 | 42 | 83 | 73 | 88 | 85 |
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
48 | 6 | 57 | 42 | 60 | 72 | 83 | 73 | 88 | 85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
#include<iostream>
using namespace std;
void quickSort(int a[],int,int);
int main()
{
int array[]={34,65,12,43,67,5,78,10,3,70},k;
int len=sizeof(array)/sizeof(int);
cout<<"The orginal array are:"<<endl;
for(k=0;k<len;k++)
cout<<array[k]<<",";
cout<<endl;
quickSort(array,0,len-1);
cout<<"The sorted array are:"<<endl;
for(k=0;k<len;k++)
cout<<array[k]<<",";
cout<<endl;
system("pause");
return 0;
}
void quickSort(int s[], int l, int r)
{
if (l < r)
{
int i = l, j = r, x = s[l];
while (i < j)
{
while(i < j && s[j] >= x) // 从右向左找第一个小于x的数
j--;
if(i < j)
s[i++] = s[j];
while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数
i++;
if(i < j)
s[j--] = s[i];
}
s[i] = x;
quickSort(s, l, i - 1); // 递归调用
quickSort(s, i + 1, r);
}
}