如何做好技术文档
如何做好技术文档,这是每一个技术人员所面临的一个重要问题。技术文档关系到技术的发展和传承,可以毫不谦虚的说,技术文档严重影响着其对应技术的发展和推广。科技是第一生产力的科学论断说明技术是生产力的基础,但是如何让一个技术能够尽可能广泛的产生影响,提升其对生产力的影响,除了技术本身之外,最重要的就是技术文档了。没有技术文档,技术的发展、推广和传承都将大打折扣!借着CSDN官方举办 『技术文档』写作方法征文挑战赛这个机会,作为一个技术文档的创作者,借此机会表达一下本人对于 『技术文档』写作方法 的一点心得体验,希望这些细碎之体验,也能够为各技术文档创作从业者甚至是技术的推广、传承有所裨益,但凡如此,也不枉本人熬夜挑灯夜战、肝出本文的一片心意。
一、技术文档的核心价值
-
沟通桥梁作用:开发与用户的认知衔接
- 消除信息不对称:将技术术语转化为用户能理解的语言(如将API响应代码404解释为"您访问的资源不存在")
- 使用场景示例:SaaS产品的配置手册帮助非技术背景用户完成系统设置
- 典型问题解决:通过流程图+文字说明的组合方式解释复杂的技术逻辑
-
知识传承载体:团队协作与新人培养
- 知识沉淀:记录系统架构决策过程(如采用微服务架构的历史原因)
- 新员工培训:包含环境配置、代码规范、调试技巧的Onboarding文档
- 版本演进记录:通过Git文档历史追溯功能变更的技术背景
- 实践案例:某团队通过完善的Wiki文档将新人上手时间从2周缩短至3天
-
产品完整性体现:专业度与可信度衡量标准
- 质量表征:文档错误率与产品缺陷率的正相关性(据研究约0.7的相关系数)
- 商业价值:完整API文档可提升开发者生态活跃度(如Stripe因优秀文档获得的开发者好评)
- 合规要求:医疗/金融等行业产品必须提供完整的技术白皮书
- 用户信任:83%的企业采购决策会参考技术文档的完整程度(Forrester调研数据)
二、前期准备阶段
- 受众分析
-
技术背景差异
- 评估用户的技术熟练度(如初级开发者、系统管理员、技术决策者等)
- 识别不同技术栈背景(如Java/Python开发者,Windows/Linux用户)
- 注意跨部门人员的知识差异(如研发、测试、运维等不同角色)
-
使用场景划分
- 常见应用场景:开发调试、系统部署、故障排查、日常运维
- 特殊应用场景:高并发处理、跨境部署、法规遵从等
- 边缘案例:异常处理、兼容性场景等
-
核心诉求定位
- 通过用户调研和工单分析提取高频需求
- 区分核心功能文档和高级功能文档需求
- 建立用户画像(如时间敏感型用户、细节导向型用户等)
-
需求确认
需求矩阵 = { 功能性需求 (API参数说明、配置项详解、功能操作流程) 非功能性需求 (性能指标、可用性要求、多语言支持) 安全合规需求 (数据加密标准、访问控制要求、审计日志规范) 需求矩阵 = \begin{cases} 功能性需求 & \text{(API参数说明、配置项详解、功能操作流程)} \\ 非功能性需求 & \text{(性能指标、可用性要求、多语言支持)} \\ 安全合规需求 & \text{(数据加密标准、访问控制要求、审计日志规范)} \end{cases} 需求矩阵=⎩ ⎨ ⎧功能性需求非功能性需求安全合规需求(API参数说明、配置项详解、功能操作流程)(性能指标、可用性要求、多语言支持)(数据加密标准、访问控制要求、审计日志规范) -
资源规划
-
文档版本与产品迭代同步策略
- 制定文档版本号规则(如v1.0.0对应产品Release 2.3)
- 建立双周同步机制确保文档更新节奏
- 设置文档冻结期与产品发布窗口期
-
多部门协作机制
- 建立跨部门评审小组(PM、QA、DevOps代表)
- 使用协作平台(如Confluence)进行需求跟踪
- 制定SOP处理紧急文档变更请求
- 设置文档质量门禁(必须通过技术审核和法律合规审查)
三、结构设计方法论
- 模块化架构设计
- 采用单一职责原则(SRP)划分功能模块,每个模块仅封装一个完整业务功能或技术能力
- 模块间通过RESTful API或RPC接口通信,接口定义需包含:
- 请求格式(JSON Schema/Protobuf)
- 响应格式(含状态码定义)
- 错误码体系(业务错误与系统错误分类)
- 典型应用场景:
- 电商系统:用户中心(会员体系)、商品中心(SPU/SKU管理)、订单中心(交易流程)、支付中心(支付网关对接)
- 内容平台:CMS模块(内容管理)、推荐模块(个性化算法)、审核模块(内容安全)
- 模块版本管理策略:
- 主版本号(不兼容的API修改)
- 次版本号(向下兼容的功能新增)
- 修订号(问题修复)
- 遵循SemVer 2.0规范,如v1.3.2表示第1个大版本的第3次功能迭代的第2个补丁
- 信息层级划分原则
- 黄金三角法则应用:
- 首屏:核心CTA按钮/关键数据看板
- 第二屏:主要功能入口/核心内容摘要
- 第三屏:次级功能/内容延伸
- 视觉权重分配标准:
- H1标题:24px以上,品牌主色
- H2副标题:20px,强调色
- 正文§:14-16px,中性色
- 注释(Small):12px,辅助色
- 内容密度控制方法:
- 使用卡片式布局分隔内容单元
- 配合图标/缩略图增强辨识度
- 长文本需分段落并添加小标题
- 实际案例对比:
平台类型 核心内容展示 次级内容处理 新闻门户 头条通栏大图+加粗标题 常规新闻列表+分页控制 SaaS后台 KPI数据看板置顶 功能菜单折叠收纳
- 导航系统搭建
3.1 目录树深度优化
- 层级控制方案:
- 物理层级:通过URL路径体现(如/products/phones/iphone14)
- 逻辑层级:采用tab切换等方式虚拟层级
- 节点数量优化技巧:
- 高频功能前置(最近使用记录)
- 低频功能归档(二级菜单收纳)
- 智能合并(根据用户角色动态调整)
- 面包屑导航实现:
<nav class="breadcrumb"> <a href="/">首页</a> > <a href="/electronics">电子设备</a> > <a href="/phones">手机</a> > <span>iPhone 14</span> </nav>
- 异常处理机制:
- 监控系统自动检测层级深度
- 超过阈值时触发重构报警
- 临时方案:自动生成"更多…"折叠菜单
3.2 交叉引用规范
- 引用系统设计要素:
- 文内引用:采用[1][2]上标标注,对应文末参考文献
- 关联推荐:基于用户画像+内容标签的混合推荐
- 热力图分析:监控点击数据优化引用位置
- 关联度算法实现:
def calculate_similarity(doc1, doc2): # TF-IDF向量化 vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform([doc1, doc2]) # 计算余弦相似度 return cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
- 最佳实践案例:
- 维基百科:通过[[内部链接]]构建知识网络
- 电商平台:"买了该商品的用户还买了"推荐栏
- 技术文档:"相关API"快速跳转区块
四、内容创作技巧
1. 技术表述规范
专业术语统一管理
- 建立术语表,包含以下要素:
- 术语定义(中文)
- 英文对应词
- 使用场景说明
- 禁用词列表
- 术语更新记录
- 实施规范:
- 新术语需经技术委员会审核后入库
- 术语表每月更新一次,版本号采用YYYYMM格式
- 术语变更需通知所有相关文档维护人员
- 示例应用:
- 在云原生场景中,将"虚拟机"统一称为"计算实例"
- 术语表中注明:"计算实例"特指IaaS层提供的虚拟化资源单元
代码注释与文档的映射关系
- 文档生成工具配置:
- Doxygen:需配置output目录、project name等参数
- Swagger:需定义basePath、schemes等OpenAPI规范
- 注释规范细则:
- 类注释:说明类职责、设计模式、使用示例
- 方法注释:
/** * 计算订单折扣金额 * @param orderNo 订单编号 (长度8-32位) * @param memberLevel 会员等级 (1-5) * @return 折扣金额 (单位:分) * @throws IllegalArgumentException 参数校验失败时抛出 */
- 特殊标记:
- TODO:待实现功能
- FIXME:已知问题
- NOTE:重要说明
2. 可视化表达
架构图绘制标准
- 工具配置清单:
- Visio:使用企业版模板(.vssx)
- Draw.io:共享团队库(XML格式)
- 分层规范示例:
层级 颜色 组件示例 基础设施 #CCE5FF 服务器、交换机 服务层 #FFECB3 API Gateway、Redis 应用层 #D5E8D4 订单服务、支付服务 - 版本控制:
- 文件名格式:架构_[系统名][YYYYMMDD][版本].png
- 图例必须包含修改记录(最后3次)
流程图逻辑校验
- Mermaid语法示例:
- 验证要点:
- 每个决策节点必须有至少两个出口
- 循环结构必须明确终止条件
- 并行流程需标注同步点
- 复杂流程处理:
- 异常分支用红色虚线箭头表示
- 添加异常代码对照表(E001-E999)
表格数据呈现规范
- 样式指南:
- 表头:深蓝背景 (#0070C0) + 白色文字
- 关键列:浅黄背景 (#FFF2CC)
- 警告数据:红色文字 (#FF0000)
- 数值处理:
- 货币:¥1,234.56
- 百分比:保留2位小数 (12.34%)
- 大数据:1.23万/1.23亿
- 排序规则标注示例:
- “按创建时间倒序 (最新在前)”
- “按金额升序 (最小在前)”
3. 多版本适配方案
国际化文档处理
- 文件结构示例:
/docs /locale /en_US messages.properties help_manual.md /ja_JP messages.properties help_manual.md
- 文字扩展处理:
语言 扩展系数 英文 1.0x 德文 1.3x 日文 0.8x - 本地化检查清单:
- 日期格式 (MM/dd/yyyy vs dd/MM/yyyy)
- 度量单位 (英寸 vs 厘米)
- 文化敏感内容
多环境配置说明
- 环境差异矩阵:
配置项 开发环境 测试环境 生产环境 数据库连接 localhost test-db cluster-prod 日志级别 DEBUG INFO WARN 缓存策略 本地缓存 Redis单节点 Redis集群 - 敏感信息处理流程:
- 在模板中使用${DB_PASSWORD}
- 添加注释:
# 生产环境密码需向运维团队申请 # 有效期:30天
- 配置项加密:使用ansible-vault加密
- 版本发布检查:
- 配置比对工具:diff-so-fancy
- 变更影响分析报告模板
- 回滚方案文档链接
五、质量保障体系
1. 验证机制
技术准确性审查
- 组建专业评审团队:
- 技术专家(3-5人):负责核心算法、API规范等关键技术验证
- 领域专家(2-3人):确保行业特定术语和流程的正确性
- 文档工程师(2人):把控文档结构和表述规范
- 采用分层审查流程:
- 第一层:初级工程师检查格式规范、基础语法和简单技术点(预计耗时1-2天)
- 第二层:高级专家复核复杂技术概念、系统架构等关键内容(预计耗时2-3天)
- 终审:技术负责人签字确认
- 建立技术资产库:
- 术语库:包含500+标准术语及定义(更新频率每月)
- 模板库:10种标准文档模板(用户手册、API参考等)
- 示例库:200+已验证的代码示例
- 深度验证案例:对于REST API文档,必须验证:
- HTTP方法(GET/POST等)使用是否正确
- 所有参数的数据类型和取值范围
- 每个状态码(200/400等)的触发条件
- 错误响应体的完整结构
可执行性测试
- 测试用例设计:
- 典型场景(80%用例):覆盖主要功能流程
- 边缘场景(20%用例):验证边界条件和异常处理
- 示例:数据库文档需测试连接超时、数据溢出等场景
- "文档即测试"实施方案:
- 代码片段必须放入自动化测试框架(如Jenkins)
- 执行频率:每次文档更新触发测试
- 通过标准:测试成功率100%
- 操作指南验证:
- 建立验证环境(Docker容器或虚拟机)
- 按文档步骤执行完整工作流
- 记录实际耗时与文档预估时间的差异
- CI/CD流水线配置:
- 代码片段测试:使用PyTest/JUnit等框架
- 命令验证:通过Shell脚本自动化执行
- 报表生成:每日测试报告自动发送至文档团队
2. 可读性优化
Flesch易读性指数应用
- 质量标准:
- 入门文档:65-70(相当于高中阅读水平)
- 技术参考:60-65(大学水平)
- 白皮书:55-60(允许适当专业度)
- 句子结构优化:
- 单句最长不超过25个单词
- 每段限制在3-5个句子
- 复合句占比<30%
- 被动语态管控:
- 技术描述允许15%被动语态
- 操作指南要求<5%被动语态
- 替代方案:"您可…“句式替代"可以…”
- 术语处理:
- 首次出现加粗并附简短定义
- 复杂术语添加"了解更多"跳转链接
- 建立术语替换表(如用"设置"替代"配置")
- 工具集成:
- Hemingway Editor:实时检测可读性
- Grammarly:检查语法错误
- 自定义检查脚本:集成到文档发布流程
认知负荷控制
- 信息架构设计:
- 核心概念(1-2页):关键定义和价值主张
- 基础操作(3-5步):满足80%用户需求
- 高级功能(独立章节):按需查阅
- 渐进式披露:
- 复杂流程分解为7±2个步骤
- 每个步骤包含:
- 操作说明(主)
- 原理说明(可折叠)
- 故障处理(侧边栏)
- 视觉辅助方案:
- 流程图:使用PlantUML统一规范
- 示意图:矢量图优先,支持缩放
- 对比表格:重要参数差异可视化
- 快速入门案例:
- 技术白皮书提供:
- 摘要版(5分钟阅读)
- 标准版(完整内容)
- 附录(技术细节)
- 技术白皮书提供:
3. 反馈闭环建设
用户评价收集
- 多渠道实施:
- 页面内嵌:每篇文档末尾的5星评分+评论框
- 月度调研:随机弹出NPS调查问卷
- 客服对接:每周汇总用户咨询TOP10问题
- 评分维度:
- 准确性(权重40%)
- 易用性(30%)
- 完整性(20%)
- 搜索体验(10%)
- NPS专项:
- 样本量:每月500+有效回复
- 问题设计:
- 推荐可能性(0-10分)
- 主要改进建议(开放题)
- 数据分析:季度同比环比对比
- 即时反馈案例:
- 关键文档添加智能按钮:
- “是”:记录成功事件
- “否”:展开详细反馈表单
- 响应时间:24小时内人工跟进
- 关键文档添加智能按钮:
埋点数据分析
- 核心指标监控:
- 页面停留时间:
- 合格标准:概念页>90秒,操作指南>120秒
- 预警阈值:低于平均值的30%
- 跳失率:
- 正常范围:<45%
- 高优先级:>60%持续3天
- 页面停留时间:
- 搜索分析:
- 关键词聚类:每周TOP100搜索词分类
- 无结果查询:建立补文档需求池
- 搜索链分析:识别典型查询路径
- 热图应用:
- 文档重点区识别:
- 代码块点击量
- 参数说明悬停时间
- 目录跳转频次
- 问题模式识别:
- 高频来回滚动区域
- 快速跳过段落
- 文档重点区识别:
- 工具集成:
- Google Analytics:基础流量分析
- Hotjar:用户行为记录
- 自研看板:关键指标可视化
- 响应机制:
- 每日:自动化异常告警
- 每周:团队分析例会
- 每月:优化效果复盘
- 紧急响应:重大问题的4小时处理SOP
六、维护迭代策略
1. 版本控制方案
- 采用Git进行版本控制,建立dev/test/prod三套环境分支
- 版本号遵循语义化版本控制规范(SemVer):
- 主版本号.次版本号.修订号(如v2.1.3)
- 重大更新递增主版本号
- 新增功能递增次版本号
- Bug修复递增修订号
- 每个版本发布时需打tag,并在CHANGELOG.md中记录更新内容
- 示例工作流:feature分支开发 → 合并到dev → 测试通过后合并到test → 生产发布时合并到prod
2. 变更追踪机制
- 使用Jira建立需求跟踪看板,包含以下状态:
- 待办 → 进行中 → 代码审查 → 测试中 → 已发布
- 每个变更需关联:
- 需求文档(Confluence)
- 代码提交(Git commit)
- 测试用例(TestRail)
- 重大变更需经过变更控制委员会(CCB)评审
- 建立回滚预案,包括:
- 数据库备份策略
- 快速回滚脚本
- 影响范围评估模板
3. 知识库更新流程
- 文档更新触发条件:
- 新功能发布
- 接口变更
- 重大Bug修复
- 架构调整
- 采用Markdown格式编写,包含:
- 系统架构图
- API文档(Swagger)
- 部署手册
- 故障处理指南
- 评审流程:
- 作者提交 → 技术负责人审核 → 文档管理员归档
- 版本化管理:
- 与代码版本保持同步
- 保留历史版本可供查阅
- 重要变更需在团队周会同步
七、常见误区解析
1. 过度设计与内容缺失的平衡
- 过度设计表现:过分追求精美排版、复杂图表,导致文档维护成本高且偏离核心内容
- 内容缺失表现:仅罗列基础功能,缺乏用例说明、边界条件等关键信息
- 平衡建议:
- 采用80/20原则,将80%精力用于核心内容,20%用于必要美化
- 建立内容检查清单(如功能描述、API参数、错误码、使用示例等)
- 案例:某支付API文档因过度设计动画效果,导致关键的安全校验说明被弱化
2. 技术深度与可读性的协调
- 常见矛盾:
- 过于专业:滥用术语,缺乏必要的解释说明
- 过于浅显:省略关键技术细节,影响开发者实施
- 解决方案:
- 分层呈现(概要→使用指南→原理详解)
- 添加术语表和技术注解区
- 示例:Kubernetes文档同时提供"快速入门"和"架构设计白皮书"两种版本
3. 静态文档与动态产品的同步
- 典型问题:
- 文档版本落后于实际产品迭代
- 线上文档与本地帮助文件内容不一致
- 同步策略:
- 建立文档自动化构建流程(如与代码仓库联动)
- 采用版本标记和变更日志
- 实践案例:GitHub通过OpenAPI规范自动生成API文档,确保实时同步
八、总结与展望
1. 文档工程化趋势
随着DevOps和敏捷开发的普及,文档工程化正在成为软件开发的重要环节。主要体现在:
- 文档即代码(Docs as Code)理念的兴起,将文档与代码同等对待
- 自动化文档生成工具的应用(如Swagger、JSDoc等)
- 版本控制系统(Git)成为文档管理的标配
- 持续集成/持续部署(CI/CD)流水线中集成文档构建环节
典型应用场景:API文档自动同步代码变更,技术文档随产品迭代同步更新
2. 智能辅助工具的影响
新一代AI辅助工具正在重塑文档工作流程:
- 智能写作助手(如Grammarly、ChatGPT)提升文档质量
- 自动摘要和内容重构工具优化信息呈现
- 多语言自动翻译降低国际化文档成本
- 基于机器学习的智能检索提升文档利用率
实际案例:某企业采用AI辅助后,文档编写时间缩短40%,错误率下降65%
3. 持续改进的文化建设
构建可持续的文档改进机制需要:
- 建立文档质量评估指标体系(完整性、准确性、易读性等)
- 定期文档审查(Peer Review)制度
- 用户反馈收集与分析系统
- 文档维护纳入绩效考核
- 建立文档知识库和最佳实践案例库
实施路径:先从重点项目试点,再逐步推广至全组织,最终形成文档质量持续改进的正向循环
3. 以人为本
说一千道一万,技术文档的本质是为用户服务的工具,因此必须始终以用户需求为核心,这是技术文档创作的根本之源,离开以人文本这个核心,所有的技术文档将无法发挥他的最大功效,也将无法达到其创作目的。以人文本体现在以下几个方面:
- 用户视角的写作方式
- 避免使用晦涩难懂的专业术语,必须使用时需提供清晰的解释
- 采用"问题-解决方案"的结构组织内容,直接回应用户痛点
- 示例:在API文档中,应先说明"如何实现用户登录"这样的常见场景,而不是直接罗列参数
- 可访问性设计
- 考虑不同阅读场景:包括移动设备浏览、打印输出等
- 支持多种学习方式:提供文字说明、流程图、视频教程等多样化内容形式
- 示例:为视障用户提供适当的文档结构和alt文本
- 持续优化的迭代机制
- 建立用户反馈渠道:评论区、评分系统、客服工单分析
- 定期更新内容:根据用户行为数据(如搜索关键词、常见问题)改进文档
- 示例:通过分析用户点击热图优化文档导航结构
- 情感化设计
- 使用友好、鼓励性的语言风格
- 在错误提示和故障排除环节提供情感支持
- 示例:在安装失败时不仅说明原因,还提供"别担心,这个问题很容易解决"等安慰性语句
优秀的文档团队会定期进行用户调研,收集真实用户的阅读体验反馈,并将这些insight转化为文档改进的具体措施。技术文档的终极目标不是展示技术细节,而是帮助用户高效地完成任务。
研究学习不易,点赞易。
工作生活不易,收藏易,点收藏不迷茫 :)