线性O(n)求1~n逆元

求某个数的逆元,我们可以用log(n)的时间算出来。

但是,如果是求1~n的所有逆元呢?是不是就要用nlog(n)的时间了?

其实我们有一种线性的方法,可以在O(n)的复杂度求出1~n的逆元。

 

我们现在想要求1~n中一个数x的逆元

先假设模数y=ax+b

则ax+b\equiv0  (%y)

将两边同时除以x·b (因为你的目的是得到一个形式为^{}x^{-1}\equiv……的式子)

则式子变为\tfrac{ax+b}{x·b}\equiv0  

拆开得a·b^{-1}+^{}x^{-1}\equiv0

x^{-1}\equiv-a·b^{-1}

因为前面说了y=ax+b

所以a=\left \lfloor \tfrac{y}{x} \right \rfloor,b=(y%x)

将此带入,得:
x^{-1}\equiv-\left \lfloor \tfrac{y}{x} \right \rfloor`(y%x)^-1

我们设f[i]表示i的逆元,

则f[i]=(-y/i*f[y%i])%y 

按照这个式子递推下去就可以得到1~n的逆元了。

当然也可以用递归的方式用log的时间求出n的逆元。

值得注意的是,因为你求的逆元也是模意义下的,所以原式应转化为f[i]=(y-y/i)*f[y%i]%y ,以此避免出现负数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值