关于个人项目进行化学图像识别的说明
- 原理说明:首先通过百度的ocr进行化学式的文字识别以及其坐标,进而实现官能团的识别以及位置构建
- 对全图进行扫描, 进而完整确定全图的结构。
- 将来可以引入ai,更高效便利实现图像识别
# coding=utf-8
from PIL import Image
from math import *
from aip import AipOcr
AppID = "25350322"
APIkey = "5tZwU0OWjz4ZOrhxLQWC6gvn"
SecretID = "AXloqKsHPGpXoNHGk5i8DxvrwVUIGT6D"
aipOcr = AipOcr(AppID, APIkey, SecretID)
def zhuaqu(filePath):
#filePath = "D:\\bf.jpg"
def get_file_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()
options = {
'detect_direction': 'true',
'language_type': 'CHN_ENG',
}
result = aipOcr.accurate(get_file_content(filePath), options)
return result["words_result"]
# print(result)
# words_result=result['words_result']
# for i in range(len(words_result)):
# print(words_result[i]['words'])
这是我利用百度ocr提供的文字识别代码写出的调用函数
接下来是化学式描图的主程序
这里描图的过程可以说是在一团毛线中找“线头”,当找到一个键线式的“线头”,那么接下来的工作就简单了:顺着这个线头向前即可。
from time import sleep
from PIL import Image
import numpy as np
import math
from huaxue1215 import zhuaqu
#定义区
Col = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255)]
pa &#