化学结构式图像识别

该博客介绍了一个个人项目,通过百度OCR进行化学结构式的文字和官能团识别。作者首先利用OCR获取化学式的文字和坐标,然后对全图扫描以确定整个结构。未来计划引入AI以提高识别效率。文中分享了使用OCR的代码调用函数及化学式描图的主要程序。
摘要由CSDN通过智能技术生成

关于个人项目进行化学图像识别的说明

  1. 原理说明:首先通过百度的ocr进行化学式的文字识别以及其坐标,进而实现官能团的识别以及位置构建
  2. 对全图进行扫描, 进而完整确定全图的结构。
  3. 将来可以引入ai,更高效便利实现图像识别
# coding=utf-8
from PIL import Image
from math import *
from aip import AipOcr
AppID = "25350322"
APIkey = "5tZwU0OWjz4ZOrhxLQWC6gvn"
SecretID = "AXloqKsHPGpXoNHGk5i8DxvrwVUIGT6D"
aipOcr = AipOcr(AppID, APIkey, SecretID)
def zhuaqu(filePath):
#filePath = "D:\\bf.jpg"
   def get_file_content(filePath):
       with open(filePath, 'rb') as fp:
           return fp.read()    
   options = {
       'detect_direction': 'true',
       'language_type': 'CHN_ENG',
   }

   result = aipOcr.accurate(get_file_content(filePath), options)
   return result["words_result"]
   # print(result)
   # words_result=result['words_result']
   # for i in range(len(words_result)):
   #     print(words_result[i]['words'])

这是我利用百度ocr提供的文字识别代码写出的调用函数
接下来是化学式描图的主程序
这里描图的过程可以说是在一团毛线中找“线头”,当找到一个键线式的“线头”,那么接下来的工作就简单了:顺着这个线头向前即可。

from time import sleep
from PIL import Image
import numpy as np
import math
from huaxue1215 import zhuaqu
#定义区
Col = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255)]
pa &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值