当 ComfyUI 工作流撞上网络安全:一个计算机学生的「攻防实战」觉醒之路

 

目录

一、从「摸鱼」到「踩雷」:我的第一次安全危机

二、ComfyUI 工作流:看似简单的「安全盲盒」

(一)可视化背后的「隐形风险」

(二)节点权限管理的「暗礁」

三、蓝耘元生代平台:安全防护的「盾」与「矛」

(一)平台级安全防护体系

(二)安全审计与监控

四、实战演练:给 ComfyUI 工作流「打补丁」

(一)场景:搭建安全的图像识别工作流

(二)安全加固步骤

1. 数据安全处理

2. 模型安全防护

3. 网络通信安全

(三)安全测试与验证

五、安全意识培养:从「被动防御」到「主动出击」

(一)安全开发习惯的养成

(二)漏洞挖掘与修复

(三)团队协作中的安全规范

六、未来展望:AI 安全的「新战场」

(一)自动化安全检测工具

(二)AI 驱动的动态防护

(三)安全沙盒环境

七、结语:安全无小事,细节见真章


一、从「摸鱼」到「踩雷」:我的第一次安全危机

作为计算机系大三学生,我一开始对网络安全的认知就停留在「别乱点陌生链接」的层面。直到有次在蓝耘元生代平台用 ComfyUI 搭图像识别工作流,本来想秀一把自己刚学的模型优化技巧,结果不小心把训练数据接口设成了公开访问。当天晚上就收到平台警告,说有异常 IP 频繁访问我的工作流,差点导致数据集泄露。这次「社死」经历让我突然意识到:原来连看似简单的 AI 工作流,都藏着这么多安全坑!从那以后,我开始琢磨,ComfyUI 工作流和网络安全到底有哪些千丝万缕的联系?

二、ComfyUI 工作流:看似简单的「安全盲盒」

 

(一)可视化背后的「隐形风险」

第一次用 ComfyUI 时,我完全被它的「傻瓜式操作」圈粉了 —— 拖几个节点就能跑通图像生成模型,连代码都不用写。但后来才发现,这种便捷性背后藏着隐患。比如工作流里的数据源节点,如果直接连接到外部 API,却没有做任何身份验证,就相当于给黑客开了一扇「后门」。我就见过同学把包含敏感数据的 CSV 文件直接挂在公共存储节点上,结果被别人下载了个精光。

# 错误示范:直接暴露数据源API
# (实际ComfyUI通过节点配置实现,但原理类似)
import requests
# 没有任何认证的API调用
response = requests.get("https://example.com/sensitive_data.csv")
data = response.json()

更可怕的是数据传输过程中的漏洞。有一次,我为了图方便,在工作流中直接传输未加密的用户隐私数据,结果被同学用抓包工具轻松获取。那一刻我才明白,在网络世界里,没有绝对的安全,任何一个疏忽都可能造成严重后果。后来我深入研究发现,数据在传输过程中,除了被窃取,还可能被篡改。比如通过中间人攻击,黑客可以修改传输的数据内容,导致工作流处理错误的数据,这对于依赖准确数据的深度学习模型来说,后果不堪设想。

(二)节点权限管理的「暗礁」

ComfyUI 的模块化设计虽然方便,但也带来了权限混乱的风险。不同节点可能涉及数据读写、模型调用、网络访问等多种权限,如果没有合理划分,就容易出大问题。我在参加一个团队项目时,就因为某个同学误把模型训练节点的权限设成了全局可写,结果训练好的模型被别人篡改,害我们重新跑了三天数据。

而且,权限管理不仅仅是设置读写权限这么简单。有一次,我们团队的一个工作流中,某个节点拥有过高的系统权限,导致黑客利用这个节点执行了恶意代码,整个工作流系统差点瘫痪。这让我深刻认识到,权限管理必须做到最小化原则,只赋予节点必要的权限。为了更好地管理权限,我开始研究权限控制模型,比如 RBAC(基于角色的访问控制)模型,并尝试在工作流中应用,通过给不同的用户角色分配不同的节点操作权限,大大提高了工作流的安全性。

三、蓝耘元生代平台:安全防护的「盾」与「矛」

(一)平台级安全防护体系

1.数据加密传输:平台对工作流传输的数据全部进行 SSL 加密,就像给数据穿上了一层「防弹衣」。我抓包分析过自己的工作流请求,发现所有数据都是密文传输,黑客就算截获了也看不懂。但我并没有满足于此,而是深入研究了 SSL 加密的原理,甚至尝试自己实现了一个简单的加密传输模块,虽然功能远不及平台的完善,但这个过程让我对数据加密有了更深刻的理解。

在研究过程中,我发现 SSL 加密也存在一些弱点,比如老旧的 SSL 版本可能存在漏洞,容易被黑客攻击。于是我开始关注 SSL 证书的更新和维护,学习如何检测和修复 SSL 加密中的安全隐患。同时,我还研究了其他加密算法,如 TLS(传输层安全)协议,对比它们与 SSL 在安全性和性能上的差异,以便在实际应用中选择更合适的加密方式。

2.访问控制策略:平台强制要求每个工作流设置访问权限,支持 IP 白名单、JWT 令牌验证等多种方式。我现在搭工作流,第一步就是把访问范围限制在实验室 IP 段,安全感直接拉满。但我也在思考,如何在保证安全的前提下,提高访问的便捷性。于是我尝试将 JWT 令牌与本地认证系统结合,实现了更灵活的访问控制。

具体来说,我通过自定义 JWT 的 Payload 内容,添加了用户的角色信息和权限范围,在工作流的每个节点访问前,都验证 JWT 令牌中的权限信息,只有具备相应权限的用户才能访问节点。这样既保证了安全,又能根据不同用户的需求,提供个性化的访问权限。同时,我还设置了 JWT 令牌的短有效期,并通过刷新令牌机制,确保用户在长时间使用工作流时,依然保持安全的访问状态。

3.容器隔离技术:每个工作流都在独立的容器中运行,就像住在不同的「安全屋」里。有次隔壁组的工作流被植入恶意代码,但因为容器隔离,完全没影响到我们,这波属实被平台的安全性圈粉了。我还专门研究了容器隔离的实现原理,发现它不仅仅是资源隔离,还涉及到网络隔离、文件系统隔离等多个方面。

为了更深入地了解容器隔离,我在本地搭建了一个小型的容器环境,通过实践操作,掌握了容器的创建、配置和管理方法。我发现,容器隔离虽然能有效防止工作流之间的相互干扰,但如果容器本身存在漏洞,也会带来安全风险。比如容器逃逸攻击,黑客可以利用容器的漏洞,突破容器的隔离限制,访问到宿主机或其他容器的资源。因此,我开始关注容器的安全配置和漏洞修复,定期更新容器的镜像版本,安装安全补丁,确保容器环境的安全性。

# 平台实现JWT验证的简化代码
import jwt
from flask import request, jsonify

def validate_token():
    token = request.headers.get('Authorization')
    if not token:
        return False
    try:
        payload = jwt.decode(token,'secret_key', algorithms=['HS256'])
        return payload
    except jwt.ExpiredSignatureError:
        return False
    except jwt.InvalidTokenError:
        return False

@app.route('/workflow', methods=['POST'])
def run_workflow():
    if not validate_token():
        return jsonify({"message": "Unauthorized"}), 401
    # 执行工作流逻辑
    return jsonify({"message": "Workflow executed successfully"}), 200

(二)安全审计与监控

平台提供了详细的操作日志和实时监控功能,就像有个 24 小时保安盯着你的工作流。我有次调试工作流时,不小心触发了高频访问告警,平台马上给我发了通知。查看日志才发现,是自己写的循环调用节点出了问题,差点酿成大祸。

但我并没有满足于平台提供的监控功能,而是尝试开发了一个自定义监控脚本。这个脚本可以实时监控工作流的资源使用情况、访问频率等指标,并在出现异常时自动发送邮件通知。通过这个脚本,我成功发现并解决了多次潜在的安全问题。

在开发监控脚本的过程中,我遇到了很多挑战。比如如何准确地获取工作流的资源使用数据,如何判断访问频率是否异常等。为了解决这些问题,我学习了 Python 的性能分析工具,如 psutil 库,用于获取系统资源使用情况;还研究了统计学中的异常检测方法,如 3σ 原则,用于判断访问频率是否异常。同时,我还实现了监控数据的可视化展示,通过图表直观地呈现工作流的运行状态,方便及时发现问题。

 登录与注册:打开浏览器,访问蓝耘 GPU 智算云平台官网(https://cloud.lanyun.net//#/registerPage?promoterCode=0131 )。新用户需先进行注册,注册成功后即可享受免费体验 18 小时算力的优惠。登录后,用户将进入蓝耘平台的控制台,在这里可以看到丰富的功能模块,如容器云市场、应用市场等 。​​ 

四、实战演练:给 ComfyUI 工作流「打补丁」

(一)场景:搭建安全的图像识别工作流

我接了个校园安防的小项目,要用 ComfyUI 搭建一个识别可疑人员的工作流,同时必须保证数据和模型的安全。一开始我以为只要把节点连好就行,结果导师直接给我指出了一堆安全漏洞。痛定思痛后,我开始了「安全改造」之旅。

(二)安全加固步骤

1. 数据安全处理
  • 节点权限设置:把图像上传节点的权限设为「仅项目组成员可写」,通过平台的用户管理系统分配访问令牌。但我并没有止步于此,而是进一步研究了如何防止令牌泄露。我发现可以通过设置令牌的有效期、限制令牌的使用次数等方式来提高安全性。

为了防止令牌泄露,我还实现了令牌的加密存储和传输。在用户登录时,生成的 JWT 令牌会被加密后存储在用户的本地设备中,每次发送请求时,令牌也是加密传输的。同时,我设置了严格的令牌刷新机制,当令牌即将过期时,自动刷新令牌,确保用户在使用工作流的过程中,令牌始终处于安全状态。

  • 数据脱敏:在数据预处理环节添加自定义 Python 节点,对图像中的人脸信息进行模糊处理。为了达到更好的脱敏效果,我尝试了多种图像处理算法,最终选择了一种结合高斯模糊和马赛克处理的方法。
# 自定义数据脱敏节点代码
from PIL import Image, ImageFilter

def desensitize_image(image_path):
    img = Image.open(image_path)
    # 对人脸区域进行高斯模糊
    face_area = (100, 100, 300, 300)  # 假设人脸区域坐标
    face = img.crop(face_area)
    face = face.filter(ImageFilter.GaussianBlur(radius=5))
    img.paste(face, face_area)
    # 添加马赛克处理
    block_size = 10
    for y in range(0, img.size[1], block_size):
        for x in range(0, img.size[0], block_size):
            box = (x, y, x + block_size, y + block_size)
            region = img.crop(box)
            region = region.resize((1, 1), Image.NEAREST).resize(box.size, Image.NEAREST)
            img.paste(region, box)
    return img

此外,我还考虑到了数据脱敏的可逆性问题。在某些情况下,可能需要对脱敏后的数据进行还原,以便进行进一步的分析或处理。因此,我在进行数据脱敏时,记录了脱敏的参数和操作步骤,在需要时可以通过相应的算法对数据进行还原。

2. 模型安全防护
  • 模型加密存储:把训练好的模型文件用 AES 算法加密后上传到平台,在工作流中通过密钥解密调用。为了提高加密的安全性,我还研究了密钥管理的方法,比如使用密钥分发中心(KDC)来管理密钥。

在实际应用中,我搭建了一个简单的 KDC 系统,用于生成、分发和管理密钥。当用户需要使用加密的模型时,KDC 会根据用户的身份和权限,生成相应的密钥,并安全地分发给用户。同时,我还设置了密钥的定期更换机制,确保密钥的安全性。此外,我对模型加密算法进行了优化,采用了 AES - 256 位加密算法,并结合哈希函数对加密后的模型进行完整性校验,防止模型在存储和传输过程中被篡改。

  • 防止模型窃取:在模型推理节点添加水印嵌入功能,一旦模型被非法导出,就能追踪到来源。我尝试了多种水印嵌入算法,最终选择了一种基于离散余弦变换(DCT)的算法,这种算法可以在不影响模型性能的前提下,有效嵌入水印。
# 模型加密与解密代码
from Crypto.Cipher import AES
import os

def encrypt_model(model_path, key):
    cipher = AES.new(key, AES.MODE_EAX)
    nonce = cipher.nonce
    with open(model_path, 'rb') as f:
        data = f.read()
    ciphertext, tag = cipher.encrypt_and_digest(data)
    with open('encrypted_model.pth', 'wb') as f:
        f.write(nonce)
        f.write(tag)
        f.write(ciphertext)

def decrypt_model(encrypted_path, key):
    with open(encrypted_path, 'rb') as f:
        nonce = f.read(16)
        tag = f.read(16)
        ciphertext = f.read()
    cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
    data = cipher.decrypt(ciphertext)
    try:
        cipher.verify(tag)
        with open('decrypted_model.pth', 'wb') as f:
            f.write(data)
        return 'decrypted_model.pth'
    except ValueError:
        print("Key incorrect or message corrupted")

为了增强水印的鲁棒性,我对水印嵌入算法进行了改进。在嵌入水印之前,先对模型进行预处理,提取模型的关键特征,然后将水印嵌入到这些关键特征中。这样即使模型经过一些常见的处理,如水印去除攻击、模型压缩等,水印依然能够被检测到。同时,我还开发了一个水印检测工具,用于检测模型中是否存在水印以及水印的来源信息。

3. 网络通信安全
  • HTTPS 强制访问:在工作流对外暴露的 API 接口强制启用 HTTPS,通过平台的 SSL 证书配置功能实现。我还研究了 SSL 证书的申请和配置过程,发现可以通过 Let's Encrypt 等免费证书颁发机构来获取证书,这大大降低了成本。

在申请和配置 SSL 证书的过程中,我遇到了很多问题,比如证书的有效期管理、证书的自动 renewal 等。为了解决这些问题,我编写了一个脚本,用于自动检测证书的有效期,并在证书即将过期时,自动申请和更新证书。同时,我还研究了 HTTPS 的性能优化方法,如启用 HTTP/2 协议、优化 SSL 握手过程等,在保证安全的前提下,提高工作流的网络通信效率。

  • 防止 DDOS 攻击:利用平台的流量清洗服务,设置访问频率阈值,一旦触发立即封禁异常 IP。我进一步研究了 DDOS 攻击的原理和防御方法,发现除了设置访问频率阈值,还可以使用 CDN、负载均衡等技术来提高系统的抗攻击能力。

我在工作流中集成了 CDN 服务,将静态资源如图片、脚本等缓存到 CDN 节点上,减轻源服务器的压力。同时,我配置了负载均衡器,将用户的请求均匀地分配到多个服务器上,提高系统的并发处理能力。此外,我还实现了基于机器学习的 DDOS 攻击检测模型,通过分析网络流量的特征,实时检测 DDOS 攻击,并自动采取相应的防御措施,如限制访问、屏蔽 IP 等。

(三)安全测试与验证

我找了几个「损友」帮忙做渗透测试。他们尝试用 SQL 注入、暴力破解等手段攻击工作流,但都被平台的防护机制挡了下来。最惊险的一次,有人试图通过伪造令牌访问工作流,结果刚发起请求就被平台拉黑了,这波安全防护属实给力!

但我并没有满足于测试结果,而是对测试过程中发现的一些潜在漏洞进行了深入分析。我发现,虽然平台的防护机制可以抵御大部分常见攻击,但对于一些新型攻击手段,还存在一定的薄弱环节。于是我查阅了大量资料,学习了最新的安全防护技术,并尝试将其应用到工作流中。

我还组织了多次安全测试演练,邀请更多的同学参与,模拟不同的攻击场景,全面检测工作流的安全性。在每次演练后,我都会对测试结果进行详细的分析和总结,找出工作流中存在的安全问题,并及时进行修复和改进。同时,我还建立了一个安全问题反馈机制,鼓励同学们发现问题及时反馈,共同提高工作流的安全性。

五、安全意识培养:从「被动防御」到「主动出击」

(一)安全开发习惯的养成

以前写代码,我总是追求功能实现,现在每次搭工作流,都会先画个「安全思维导图」:数据从哪里来?经过哪些节点?谁能访问?这种思维转变让我少踩了很多坑。就像给工作流装了个「安全大脑」,提前预判风险。

我还养成了定期审查代码和工作流的习惯。每次完成一个项目后,我都会花时间仔细检查代码中是否存在安全漏洞,工作流的权限设置是否合理。通过这种方式,我成功发现并修复了多个隐藏的安全问题。同时,我还建立了一个代码审查清单,列出了常见的安全问题和检查要点,在审查代码和工作流时,按照清单逐一检查,确保不遗漏任何安全隐患。

(二)漏洞挖掘与修复

我开始主动学习漏洞挖掘技巧,没事就用 Burp Suite 抓包分析自己的工作流。有次发现一个数据下载节点存在越权访问漏洞,通过修改请求参数就能下载别人的数据。赶紧提交给平台修复,还收到了奖励,这种「发现问题 - 解决问题」的成就感比写代码爽多了!

为了提高自己的漏洞挖掘能力,我参加了多个网络安全竞赛和培训课程。在这个过程中,我结识了很多志同道合的朋友,我们经常一起交流漏洞挖掘的经验和技巧。通过不断学习和实践,我的漏洞挖掘能力得到了显著提升。我还学习了一些自动化漏洞挖掘工具的使用,如 Nessus、OpenVAS 等,这些工具可以帮助我快速扫描工作流中的安全漏洞,提高漏洞挖掘的效率。

(三)团队协作中的安全规范

在团队项目里,我牵头制定了一套 ComfyUI 工作流安全开发规范:

  1. 所有数据源节点必须配置访问认证;
  2. 敏感数据节点禁止直接暴露在公网;
  3. 每周进行一次安全自查,互相 “找茬”;
  4. 新加入工作流的节点,必须经过安全审核后才能合并到主分支;
  5. 对工作流的任何修改,都要在版本控制系统中详细备注安全相关变更;
  6. 定期组织团队成员学习最新的网络安全知识和案例,特别是与 AI 工作流相关的安全漏洞与防范方法。

为了确保这些规范能切实执行,我还设计了配套的监督机制。专门设置了一名 “安全管理员” 角色,由团队成员轮流担任,负责检查每周的安全自查报告,审核新节点的安全性,以及监督版本控制系统中的备注是否规范。

记得有一次,团队里新来了一位同学,在搭建数据预处理工作流时,为了图方便,将一个临时存储敏感数据的节点设置成了默认公开权限。幸好当时轮到我担任安全管理员,在每日的工作流巡检中及时发现了这个问题。我立即叫停了他的操作,并和他一起分析问题的严重性。通过实际案例,给他讲解了一旦数据泄露可能造成的后果,以及黑客可能利用这个漏洞进行的攻击方式。

从那之后,我们团队对规范的执行更加严格。为了让大家更直观地理解安全规范,我还制作了一系列可视化的安全操作指南。比如,用流程图展示从数据接入到模型输出的完整安全流程,标注每个环节的安全要点;用对比图说明正确和错误的节点权限设置方式。

此外,我们还会定期进行安全应急演练。模拟工作流遭受攻击的场景,如数据被篡改、模型被窃取等,让团队成员按照预定的应急方案进行处理。第一次演练时,大家手忙脚乱,有的不知道该如何快速隔离受攻击的节点,有的在恢复数据备份时出现操作失误。但经过几次演练后,团队逐渐形成了一套高效的应急响应机制。现在,一旦遇到安全问题,我们能够迅速定位问题节点,切断攻击路径,最大程度减少损失。

通过这些努力,团队在开发效率和安全性上都有了显著提升。之前因为安全问题导致项目延期的情况再也没有出现过,大家也从一开始对安全规范的不理解,转变为主动遵守和维护。这种转变不仅让我们的项目更加安全可靠,也让我深刻体会到,在团队协作中,建立完善的安全规范和有效的执行机制是多么重要。

六、未来展望:AI 安全的「新战场」

(一)自动化安全检测工具

现在排查工作流安全漏洞基本靠手动,未来要是能开发出自动检测工具就好了。比如输入工作流文件,工具自动分析节点连接关系,找出潜在的安全风险,甚至给出修复建议。要是真有这样的神器,能帮我们省不少事儿!

目前我已经开始尝试用 Python 编写简单的检测脚本。比如利用正则表达式匹配工作流配置文件中可能存在安全隐患的节点设置,像未加密的数据传输节点、权限过大的操作节点等。但这只是初级阶段,未来理想中的工具应该具备更强大的功能。它可以基于知识图谱技术,将 ComfyUI 的各种节点类型、数据流向、权限配置等信息构建成安全知识网络。当输入一个工作流时,工具能快速在知识图谱中检索潜在风险,例如发现某个数据处理节点连接到了外部未知 API,且没有任何认证机制,就自动标记并给出类似 “该节点存在数据泄露风险,建议添加 OAuth 2.0 认证” 的详细修复方案。

(二)AI 驱动的动态防护

既然 AI 能用来搞攻击,那也能用它做防御啊!想象一下,用深度学习模型实时分析工作流的访问行为,一旦发现异常模式,自动触发防护机制。比如检测到某个 IP 短时间内频繁请求敏感节点,直接封禁,这才是真正的「以毒攻毒」!

我在实验室尝试基于历史访问数据训练了一个简单的异常检测模型。使用 LSTM 神经网络,将工作流的访问时间、请求频率、访问节点类型等特征作为输入,通过大量正常访问数据训练模型的正常行为模式。当有新的访问请求时,模型会计算当前行为与正常模式的偏离程度,如果超过阈值就发出警报。但这只是初步探索,未来的动态防护系统应该更智能。它可以结合强化学习,让防护策略根据攻击变化自动优化。例如面对新型的分布式攻击,系统能自动调整流量清洗规则,将攻击流量引导到蜜罐节点,同时不影响正常工作流的运行。

(三)安全沙盒环境

希望平台能推出安全沙盒功能,我们可以在里面模拟各种攻击场景,测试工作流的安全性。就像黑客攻防演练一样,既能提升我们的实战能力,又不用担心真的造成数据泄露,简直是学习网络安全的「神器」!

理想的安全沙盒应该具备高度的可定制性。不仅能模拟常见的网络攻击,如 SQL 注入、DDoS 攻击,还能模拟 AI 特有的攻击场景,比如对抗样本攻击、模型逆向工程攻击等。在沙盒中,我们可以自由修改工作流的参数、节点配置,观察不同设置下工作流的安全表现。同时,沙盒可以提供详细的攻击分析报告,例如在模拟对抗样本攻击后,报告能指出模型的哪些部分最容易受到攻击,哪些防御措施效果最佳。甚至可以引入虚拟对手,基于 AI 技术生成智能攻击策略,与开发者的防御策略进行对抗,帮助我们不断提升安全防护水平。

七、结语:安全无小事,细节见真章

从当初那个差点泄露数据的「小白」,到现在能独立完成安全加固的「准安全卫士」,这段经历让我深刻认识到:在 AI 时代,网络安全不再是独立的领域,而是和我们的开发工作紧密相连。ComfyUI 工作流虽然方便,但每一个节点、每一次连接都可能成为安全隐患。作为计算机专业的学生,我们不仅要会写代码、搭模型,更要养成安全开发的思维,让技术在安全的轨道上发挥更大价值。

我在学习过程中积累的经验教训,都成了宝贵的财富。比如在一次课程设计中,我们小组开发基于 ComfyUI 的医疗影像诊断工作流。因为前期就严格遵循安全规范,从数据加密存储到节点权限最小化,每个环节都反复检查。当隔壁小组因为数据泄露导致项目停滞时,我们的工作流却平稳运行,顺利完成了项目。这让我更加坚信,安全是技术应用的基石。

网络安全的学习之路没有终点,技术在不断发展,攻击手段也在持续更新。未来,我还想深入研究联邦学习中的安全问题,探索如何在保护数据隐私的前提下实现多方数据协同建模。也期待和更多同学一起交流,如果你在 ComfyUI 工作流安全实践中遇到有趣的问题或有新的想法,欢迎在评论区留言,咱们一起把 AI 安全防线筑得更牢!

评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小周不想卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值