AtCoder Beginner Contest 214 F - Substrings(容斥dp)

LINK

定义 f [ i ] f[i] f[i]表示 [ 1 , i ] [1,i] [1,i]的以 i i i结尾的不同子串个数(这些子串不在 j < i j<i j<i时的 f [ j ] f[j] f[j]中计算)

由于 ∑ j = 0 i − 1 f [ j ] \sum\limits_{j=0}^{i-1}f[j] j=0i1f[j]是本质不同的子序列,在后面都加上一个 a i a_i ai,彼此仍然是本质不同子序列

如果不考虑重复问题,转移方程为 f [ i ] = ∑ j = 0 i − 1 f [ j ] f[i]=\sum\limits_{j=0}^{i-1}f[j] f[i]=j=0i1f[j]

但是有问题,我们的状态定义是也不能和之前的子序列重复

于是我们找到索引最大的 k k k满足 a k = = a i a_k==a_i ak==ai,那么 [ 1 , k − 1 ] [1,k-1] [1,k1]的所有子序列和 a i a_i ai形成的子序列,和 a k a_k ak也能形成,其实在 f [ k ] f[k] f[k]中被计算过了

所以正确的转移是 f [ i ] = ∑ j = k i − 1 f [ j ] f[i]=\sum\limits_{j=k}^{i-1}f[j] f[i]=j=ki1f[j]

而且这个转移方程的复杂度很低,看起来是 O ( n 2 ) O(n^2) O(n2),但是每次都找到最大的 k k k,均摊是 O ( n ) O(n) O(n)

我们把这个及技巧运用到本题中来

题目中要要求不能选择相邻的字母,那么是不是转移的时候特判一下 i − j > = 2 i-j>=2 ij>=2即可?

f [ i ] = ∑ j = k i − 1 f [ j ] f[i]=\sum\limits_{j=k}^{i-1}f[j] f[i]=j=ki1f[j]

差不多,但是需要额外加上 f [ k − 1 ] f[k-1] f[k1],因为 k − 1 , k k-1,k k1,k相邻,所以 f [ k − 1 ] f[k-1] f[k1]没有被计算过

实现起来略有及技巧

实现Ⅰ.因为 f [ 0 ] = 1 f[0]=1 f[0]=1,而 f [ 1 ] = 1 f[1]=1 f[1]=1

这其实违背了上面的不能选相邻的字母,所以后续如果 k = 1 k=1 k=1时就不需要加 f [ k − 1 ] f[k-1] f[k1]

实现Ⅱ.考虑令第一个位置的字母为空格,把 s s s串拼接到这个空格之后

那么 f [ 0 ] = 1 , f [ 1 ] = 0 f[0]=1,f[1]=0 f[0]=1,f[1]=0符合转移,后续不需要特判

最后累加 ∑ i = 2 n + 1 f [ i ] \sum\limits_{i=2}^{n+1}f[i] i=2n+1f[i]即可

#include <bits/stdc++.h>
using namespace std;
const int maxn = 3e5+10;
const int mod = 1e9+7;
int n,q,f[maxn];
char a[maxn];
int main()
{
	cin >> ( a+1 ); n = strlen( a+1 );
	f[0] = 1, f[1] = 1;
	int ans = 0;
	for(int i=2;i<=n;i++)
	{
		for(int j=i-1;j>=0;j--)
		{
			if( i-j>=2 )
				f[i] = ( f[i]+f[j] )%mod;
			if( a[i]==a[j] && j!=1 )
				f[i] = ( f[i]+f[j-1] )%mod;
			if( a[i]==a[j] )	break;
		}
	}
	for(int i=1;i<=n;i++)	ans = ( ans+f[i] )%mod;
	cout << ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值