浅谈倍增及应用

浅谈倍增

倍增思想

原理:

倍增,即成倍增长。在处理一系列序列数据时,倍增可通过指数级的增长快速覆盖所有数据。

倍增算法采用2倍增长的方式,其核心思想是建立以下数组T a[i][j] ,表示自i向后共 2 j 2^j 2j个数据的某些特性,如最大值等

倍增算法的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),其中倍增的初始化为 O ( n l o g n ) O(nlogn) O(nlogn),查询 O ( 1 ) O(1) O(1)

实现:

首先,我们需要初始化 l o g 2 log_2 log2数组,以便查询

log[1] = 0;
for(int i = 2; i <= N; i++)
  log[i] = log[i/2] + 1;

而后,我们对倍增数组进行初始化,这里倍增数组表示最大值

for(int i = 1; i <= N; i++){
  cin >> a[i][0];
}
for(int i = 0; i <= N; i++){
  for(int j = 1; i + (1<<j) - 1 <= N; j++){
    a[i][j] = max(a[i][j-1],a[i+(1<<(j-1))][j-1]);
  }
}

最后,我们来实现查询操作

int l,r;
cin >> l >> r;
int k = log[r-l+1];
int ans = max(a[l][k],a[r-(1<<k)+1][k]);

应用

倍增作为一种程序设计的基本思想,广泛应用于各种算法中,其中最常见的用途有三种:快速幂、RMQ、LCA

快速幂

对于要计算的 a k a^k ak,可对 k k k进行二进制分解,当 k k k最后一位为1时,易知, a n s = a ∗ a k − 1 ans = a * a^{k-1} ans=aak1,此时我们可以令 a n s ∗ = a ans*=a ans=a,再使得原来的 a k a^k ak变成 a k − 1 a^{k-1} ak1,其中, a k − 1 = ( a 2 ) k > > 1 a^{k-1} = (a^2)^{k>>1} ak1=(a2)k>>1,则只需令 a = a ∗ a a = a * a a=aa,再令$ k = k>>1$

而当 k k k的最后一位不为1时,可知, a k = ( a 2 ) k > > 1 a^k = (a^2)^{k>>1} ak=(a2)k>>1,只需令 a = a ∗ a a = a * a a=aa,再令$ k = k>>1$

int qpow(int a,int k){
  int ans = 1;
  while(k){
    if(k&1)
      ans*=a;
    k>>1;
    a*=a;
  }
}

RMQ

R M Q RMQ RMQ R a n g e   M a x i m u m ( M i n i n u m )   Q u e r y Range \ Maximum(Mininum)\ Query Range Maximum(Mininum) Query的缩写,即区间最大/小值的查询问题

最大值查询实现如下:

log[0]=1;
for(int i=1;i<=n;i++)
  log[i]=log[i/2]+1;
for(int i=1;i<=n;i++)
  cin>>a[i][0];
for(int i=1;i<=n;i++){
  for(int j=1;i+(1<<j)-1<=n;j++)
    a[i][j]=max(a[i-1][j-1],a[i+(1<<(j-1))][j-1]);
}
int k=log[r-l+1];
int ans=max(a[l][k],a[r-(1<<k)+1][k]);

LCA

L C A LCA LCA L e a s t   C o m m o n   A n c e s t o r s Least\ Common\ Ancestors Least Common Ancestors的缩写,即最近公共祖先问题,是树论中的经典问题

截屏2022-10-20 10.40.03

如上图, L C A ( 5 , 9 ) = 2 LCA(5,9) = 2 LCA(5,9)=2

利用倍增思想,我们可以预处理出每个节点的 2 k 2^k 2k级祖先,之后开始操作:

对于两个深度不同的节点,先让深度低的节点向上跳,直到处于相同深度

int lca(int x,int y){
	if(depth[x]<depth[y]) 
    swap(x,y);
        while(depth[x]>depth[y]) 
          x=st[x][log[depth[x]-depth[y]]]; 
  if(x==y) return y;
	for(int k=log[depth[x]];k>=0;k--) 
    if(st[x][k]!=st[y][k]){
      x=st[x][k];
      y=st[y][k];
    }
        return st[x][0];
}

总结

倍增算法的精髓,是对大范围数据采用指数级的处理,通过指数次数的减少再来提高精确度,即二进制分解,再逐步对每一位进行操作。如,在 L C A LCA LCA中,采用将向上跳的数量通过二进制分解;在快速幂中,对幂数进行二进制分解,从而降低复杂度

倍增算法不仅仅用于这三种算法,其思想需融会贯通于程序设计中,以提高程序效率

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值