浅谈生成函数推导斐波那契数列以及特征函数

浅谈生成函数推导斐波那契数列以及特征函数

一.关于生成函数

1.数列的多项式表示法

对于一个数列 a n a_n an,我们可以利用一个多项式来表示它,即 A ( x ) = Σ a i x i A(x)=\Sigma a_i x^i A(x)=Σaixi

举个例子,对于数列 a n = n a_n=n an=n,它的多项式表示法就是 A ( x ) = x + 2 x 2 + 3 x 3 + . . . A(x)=x+2x^2+3x^3+... A(x)=x+2x2+3x3+...

这里的多项式是形式幂级数,也就是变量只是一个符号,我们不关心它取值带来的影响,只关心它所携带的信息。

因为本篇着眼于文化课上的生成函数应用,所以暂且不提指数型生成函数

2.生成函数的封闭形式

再举个例子,对于序列 < 1 , 1 , 1 , 1... > <1,1,1,1...> <1,1,1,1...>,它的生成函数要写成一个多项式的形式,十分不直观,我们可以考虑把它的生成函数写成一个封闭的形式。

这里,分享两个方法。

设该数列的生成函数为 A ( x ) A(x) A(x)

Solution 1:

根据我们小学就学过的等比数列求和公式,
A ( x ) = 1 − x n 1 − x A(x)=\frac{1-x^n}{1-x} A(x)=1x1xn

所以 l i m n → + ∞ A ( x ) = 1 1 − x , ( ∣ x ∣ < 1 ) lim_{n\rightarrow+\infty} A(x)=\frac{1}{1-x},(|x|<1) limn+A(x)=1x1,(x<1)

Solution 2:

A ( x ) ⋅ x + 1 = A ( x ) A(x)⋅x+1=A(x) A(x)x+1=A(x)

S o So So w e we we h a v e have have A ( x ) = 1 1 − x A(x)=\frac{1}{1-x} A(x)=1x1

推广一下,又有
1 1 − k x = 1 + k x + k 2 x 2 + k 3 x 3 . . . \frac{1}{1-kx}=1+kx+k^2x^2+k^3x^3... 1kx1=1+kx+k2x2+k3x3...

也就是说,生成函数为 1 1 − k x \frac{1}{1-kx} 1kx1的数列的通项公式为 a n = k n a_n=k^n an=kn

3.生成函数的应用

生成函数一般有两个用途

1.对于给定的递推公式,求其通项公式

2.解决一些计数类问题

二.斐波那契数列通项公式的推导

我们设斐波那契数列的通项公式为 f n f_n fn,设其生成函数为 F ( x ) F(x) F(x),那么

F ( x ) = Σ f i x i = f 1 x + Σ i ≥ 2 f i x i F(x)=\Sigma{f_ix^i}=f_1x+ \Sigma_{i\geq2}{f_ix^i} F(x)=Σfixi=f1x+Σi2fixi

= x + Σ i ≥ 2 ( f i − 2 + f i − 1 ) x i =x+\Sigma_{i\geq2}(f_{i-2}+f_{i-1})x^i =x+Σi2(fi2+fi1)xi

= x + x 2 Σ i ≥ 2 f i − 2 x i − 2 + x Σ i ≥ 2 f i − 1 x i − 1 =x+x^2\Sigma_{i\geq2}f_{i-2}x^{i-2}+x\Sigma_{i\geq2}f_{i-1}x^{i-1} =x+x2Σi2fi2xi2+xΣi2fi1xi1

= x + x 2 F ( x ) + x F ( x ) =x+x^2F(x)+xF(x) =x+x2F(x)+xF(x)

所以, F ( x ) = x 1 − x − x 2 F(x)=\frac{x}{1-x-x^2} F(x)=1xx2x
可用待定系数法分解为:

F ( x ) = 1 5 ( ( 1 1 − 1 + 5 2 x ) − ( 1 1 − 1 − 5 2 x ) ) F(x)=\frac{1}{\sqrt5}((\frac{1}{1-\frac{1+\sqrt5}{2}x})-(\frac{1}{1-\frac{1-\sqrt5}{2}x})) F(x)=5 1((121+5 x1)(1215 x1))
根据之前的结论, f n = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) f_n=\frac{1}{\sqrt5}((\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n) fn=5 1((21+5 )n(215 )n)

三.关于特征函数

对于一个递推式 a n = a n − 1 + a n − 2 a_n=a_{n-1}+a_{n-2} an=an1+an2,可以写成 x 2 = x + 1 x^2=x+1 x2=x+1的形式,可再都降个次,也就是 x = 1 + 1 x x=1+\frac{1}{x} x=1+x1的形式,我们再观察上面的 F ( x ) F(x) F(x),发现互为倒数,也就是说特征函数可以由生成函数来推导。
(UPDATE:前面证明需把数列扩展至第0位)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值