树的双亲表存储表示

转载:http://hi.baidu.com/fire_man/blog/item/989eb619f7e41978dbb4bdaa.html

/* c6-4.h 树的双亲表存储表示 */

#define MAX_TREE_SIZE 100

typedef struct

{

    TElemType data;

    int parent; /* 双亲位置域 */

} PTNode;

typedef struct

{

    PTNode nodes[MAX_TREE_SIZE];

    int n; /* 结点数 */

} PTree;

 

 

/* bo6-4.c 树的双亲表存储(存储结构由c6-4.h定义)的基本操作(14) */

Status InitTree(PTree *T)

{ /* 操作结果: 构造空树T */

    (*T).n=0;

    return OK;

}

void DestroyTree()

{ /* 由于PTree是定长类型,无法销毁 */

}

typedef struct

{

    int num;

    TElemType name;

}QElemType; /* 定义队列元素类型 */

#include"c3-2.h" /* 定义LinkQueue类型 */

#include"bo3-2.c" /* LinkQueue类型的基本操作 */

Status CreateTree(PTree *T)

{ /* 操作结果: 构造树T */

    LinkQueue q;

    QElemType p,qq;

    int i=1,j,l;

    char c[MAX_TREE_SIZE]; /* 临时存放孩子结点数组 */

    InitQueue(&q); /* 初始化队列 */

    printf("请输入根结点(字符型,空格为空): ");

    scanf("%c%*c",&(*T).nodes[0].data); /* 根结点序号为0,%*c吃掉回车符 */

    if((*T).nodes[0].data!=Nil) /* 非空树 */

    {

      (*T).nodes[0].parent=-1; /* 根结点无双亲 */

      qq.name=(*T).nodes[0].data;

      qq.num=0;

      EnQueue(&q,qq); /* 入队此结点 */

      while(i<MAX_TREE_SIZE&&!QueueEmpty(q)) /* 数组未满且队不空 */

      {

        DeQueue(&q,&qq); /* 出队一个结点 */

        printf("请按长幼顺序输入结点%c的所有孩子: ",qq.name);

        gets(c);

        l=strlen(c);

        for(j=0;j<l;j++)

        {

          (*T).nodes[i].data=c[j];

          (*T).nodes[i].parent=qq.num;

          p.name=c[j];

          p.num=i;

          EnQueue(&q,p); /* 入队此结点 */

          i++;

        }

      }

      if(i>MAX_TREE_SIZE)

      {

        printf("结点数超过数组容量/n");

        exit(OVERFLOW);

      }

      (*T).n=i;

    }

    else

      (*T).n=0;

    return OK;

}

#define ClearTree InitTree /* 二者操作相同 */

Status TreeEmpty(PTree T)

{ /* 初始条件: T存在。操作结果: T为空树,则返回TRUE,否则返回FALSE */

    if(T.n)

      return FALSE;

    else

      return TRUE;

}

int TreeDepth(PTree T)

{ /* 初始条件: T存在。操作结果: 返回T的深度 */

    int k,m,def,max=0;

    for(k=0;k<T.n;++k)

    {

      def=1; /* 初始化本际点的深度 */

      m=T.nodes[k].parent;

      while(m!=-1)

      {

        m=T.nodes[m].parent;

        def++;

      }

      if(max<def)

        max=def;

    }

    return max; /* 最大深度 */

}

TElemType Root(PTree T)

{ /* 初始条件: T存在。操作结果: 返回T的根 */

    int i;

    for(i=0;i<T.n;i++)

      if(T.nodes[i].parent<0)

        return T.nodes[i].data;

    return Nil;

}

TElemType Value(PTree T,int i)

{ /* 初始条件: T存在,i是树T中结点的序号。操作结果: 返回第i个结点的值 */

    if(i<T.n)

      return T.nodes[i].data;

    else

      return Nil;

}

Status Assign(PTree *T,TElemType cur_e,TElemType value)

{ /* 初始条件: T存在,cur_e是树T中结点的值。操作结果: cur_evalue */

    int j;

    for(j=0;j<(*T).n;j++)

    {

      if((*T).nodes[j].data==cur_e)

      {

        (*T).nodes[j].data=value;

        return OK;

      }

    }

    return ERROR;

}

TElemType Parent(PTree T,TElemType cur_e)

{ /* 初始条件: T存在,cur_eT中某个结点 */

    /* 操作结果: cur_eT的非根结点,则返回它的双亲,否则函数值为"空" */

    int j;

    for(j=1;j<T.n;j++) /* 根结点序号为0 */

      if(T.nodes[j].data==cur_e)

        return T.nodes[T.nodes[j].parent].data;

    return Nil;

}

TElemType LeftChild(PTree T,TElemType cur_e)

{ /* 初始条件: T存在,cur_eT中某个结点 */

    /* 操作结果: cur_eT的非叶子结点,则返回它的最左孩子,否则返回"空" */

    int i,j;

    for(i=0;i<T.n;i++)

      if(T.nodes[i].data==cur_e) /* 找到cur_e,其序号为i */

        break;

    for(j=i+1;j<T.n;j++) /* 根据树的构造函数,孩子的序号>其双亲的序号 */

      if(T.nodes[j].parent==i) /* 根据树的构造函数,最左孩子(长子)的序号<其它孩子的序号 */

        return T.nodes[j].data;

    return Nil;

}

TElemType RightSibling(PTree T,TElemType cur_e)

{ /* 初始条件: T存在,cur_eT中某个结点 */

    /* 操作结果: cur_e有右(下一个)兄弟,则返回它的右兄弟,否则返回"空" */

    int i;

    for(i=0;i<T.n;i++)

      if(T.nodes[i].data==cur_e) /* 找到cur_e,其序号为i */

        break;

    if(T.nodes[i+1].parent==T.nodes[i].parent)

    /* 根据树的构造函数,cur_e有右兄弟的话则右兄弟紧接其后 */

      return T.nodes[i+1].data;

    return Nil;

}

Status Print(PTree T)

{ /* 输出树T。加 */

    int i;

    printf("结点个数=%d/n",T.n);

    printf(" 结点 双亲/n");

    for(i=0;i<T.n;i++)

    {

      printf("     %c",Value(T,i)); /* 结点 */

      if(T.nodes[i].parent>=0) /* 有双亲 */

        printf("     %c",Value(T,T.nodes[i].parent)); /* 双亲 */

      printf("/n");

    }

    return OK;

}

Status InsertChild(PTree *T,TElemType p,int i,PTree c)

{ /* 初始条件: T存在,pT中某个结点,1≤i≤p所指结点的度+1,非空树cT不相交 */

    /* 操作结果: 插入cTp结点的第i棵子树 */

    int j,k,l,f=1,n=0; /* 设交换标志f的初值为1,p的孩子数n的初值为0 */

    PTNode t;

    if(!TreeEmpty(*T)) /* T不空 */

    {

      for(j=0;j<(*T).n;j++) /* T中找p的序号 */

        if((*T).nodes[j].data==p) /* p的序号为j */

          break;

      l=j+1; /* 如果cp的第1棵子树,则插在j+1 */

      if(i>1) /* c不是p的第1棵子树 */

      {

        for(k=j+1;k<(*T).n;k++) /* j+1开始找p的前i-1个孩子 */

          if((*T).nodes[k].parent==j) /* 当前结点是p的孩子 */

          {

            n++; /* 孩子数加1 */

            if(n==i-1) /* 找到p的第i-1个孩子,其序号为k1 */

              break;

          }

        l=k+1; /* c插在k+1 */

      } /* p的序号为j,c插在l */

      if(l<(*T).n) /* 插入点l不在最后 */

        for(k=(*T).n-1;k>=l;k--) /* 依次将序号l以后的结点向后移c.n个位置 */

        {

          (*T).nodes[k+c.n]=(*T).nodes[k];

          if((*T).nodes[k].parent>=l)

            (*T).nodes[k+c.n].parent+=c.n;

        }

      for(k=0;k<c.n;k++)

      {

        (*T).nodes[l+k].data=c.nodes[k].data; /* 依次将树c的所有结点插于此处 */

        (*T).nodes[l+k].parent=c.nodes[k].parent+l;

      }

      (*T).nodes[l].parent=j; /* c的根结点的双亲为p */

      (*T).n+=c.n; /* T的结点数加c.n */

      while(f)

      { /* 从插入点之后,将结点仍按层序排列 */

        f=0; /* 交换标志置0 */

        for(j=l;j<(*T).n-1;j++)

          if((*T).nodes[j].parent>(*T).nodes[j+1].parent)

          {/* 如果结点j的双亲排在结点j+1的双亲之后(树没有按层序排列),交换两结点*/

            t=(*T).nodes[j];

            (*T).nodes[j]=(*T).nodes[j+1];

            (*T).nodes[j+1]=t;

            f=1; /* 交换标志置1 */

            for(k=j;k<(*T).n;k++) /* 改变双亲序号 */

              if((*T).nodes[k].parent==j)

                (*T).nodes[k].parent++; /* 双亲序号改为j+1 */

              else if((*T).nodes[k].parent==j+1)

                (*T).nodes[k].parent--; /* 双亲序号改为j */

          }

      }

      return OK;

    }

    else /* T不存在 */

      return ERROR;

}

Status deleted[MAX_TREE_SIZE+1]; /* 删除标志数组(全局量) */

void DeleteChild(PTree *T,TElemType p,int i)

{ /* 初始条件: T存在,pT中某个结点,1≤i≤p所指结点的度 */

    /* 操作结果: 删除T中结点p的第i棵子树 */

    int j,k,n=0;

    LinkQueue q;

    QElemType pq,qq;

    for(j=0;j<=(*T).n;j++)

      deleted[j]=0; /* 置初值为0(不删除标记) */

    pq.name='a'; /* 此成员不用 */

    InitQueue(&q); /* 初始化队列 */

    for(j=0;j<(*T).n;j++)

      if((*T).nodes[j].data==p)

        break; /* j为结点p的序号 */

    for(k=j+1;k<(*T).n;k++)

    {

      if((*T).nodes[k].parent==j)

        n++;

      if(n==i)

        break; /* kp的第i棵子树结点的序号 */

    }

    if(k<(*T).n) /* p的第i棵子树结点存在 */

    {

      n=0;

      pq.num=k;

      deleted[k]=1; /* 置删除标记 */

      n++;

      EnQueue(&q,pq);

      while(!QueueEmpty(q))

      {

        DeQueue(&q,&qq);

        for(j=qq.num+1;j<(*T).n;j++)

          if((*T).nodes[j].parent==qq.num)

          {

            pq.num=j;

            deleted[j]=1; /* 置删除标记 */

            n++;

            EnQueue(&q,pq);

          }

      }

      for(j=0;j<(*T).n;j++)

        if(deleted[j]==1)

        {

          for(k=j+1;k<=(*T).n;k++)

          {

            deleted[k-1]=deleted[k];

            (*T).nodes[k-1]=(*T).nodes[k];

            if((*T).nodes[k].parent>j)

              (*T).nodes[k-1].parent--;

          }

          j--;

        }

      (*T).n-=n; /* n为待删除结点数 */

    }

}

void TraverseTree(PTree T,void(*Visit)(TElemType))

{ /* 初始条件:二叉树T存在,Visit是对结点操作的应用函数 */

    /* 操作结果:层序遍历树T,对每个结点调用函数Visit一次且仅一次 */

    int i;

    for(i=0;i<T.n;i++)

      Visit(T.nodes[i].data);

    printf("/n");

}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值