自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(110)
  • 收藏
  • 关注

原创 BM20 | 数组中的逆序对 题解

【代码】BM20 | 数组中的逆序对 题解。

2025-06-11 16:55:13 70

原创 BM19 | 寻找峰值 题解

【代码】BM19 | 寻找峰值 题解。

2025-06-11 16:33:19 271

原创 BM18 | 二维数组中的查找 题解

【代码】BM18 | 二维数组中的查找 题解。

2025-06-11 16:20:28 41

原创 牛客 | BM1 二分查找-I 题解

【代码】牛客 | BM1 二分查找-I 题解。

2025-06-11 15:40:37 86

原创 牛客 BM16 删除有序链表中重复的元素-ii

【代码】牛客 BM16 删除有序链表中重复的元素-ii。

2025-06-10 14:47:04 59

原创 BM12 单链表排序

【代码】BM12 单链表排序。

2025-06-09 12:44:26 81

原创 算法题——合并 k 个升序的链表

【代码】算法题——合并 k 个升序的链表。

2025-06-07 16:49:44 80

原创 pip安装python第三方库报错

ERROR: Could not install packages due to an OSError: [WinError 32] 另一个程序正在使用此文件,进程无法访问。: 'C:\\Users\\Lenovo\\AppData\\Local\\Temp\\pip-unpack-9i5hs6ml\\tensorflow-2.10.1-cp310-cp310-win_amd64.whl'这是安装源的问题,我是换为阿里云镜像就安装成功了。

2025-06-03 19:51:17 185

原创 powershell 中 invoke-expression 报错解决

根据豆包的指示,在终端执行以下 几个命令,报错解决了(开心万岁)网上搜了也没有很好的解决办法,抱着一点点期待,问了豆包。

2025-05-30 19:54:31 216

原创 强化学习自学笔记(第一次课:基本概念,第二次课:贝尔曼公式(state value、贝尔曼公式的推导))

自学资料为MOOC中赵世钰的《强化学习的数学原理》

2025-05-29 16:54:32 163

原创 数据可视化(第4、5、6次课)

散点图。

2025-05-29 16:46:00 577

原创 python练习(第一章)

3. 编写test函数,功能是找出单词 “welcome” 在字符串 “Hello, welcome to my world.” 中出现的位置,找不到返回-1。5. 找出列表a = [“hello”, “world”, “spark”, “congratulations”] 中单词最长的一个。1. 已知字符串 “hello_world_spark” ,如何按 “_” 进行分割?6、测试第一个Jupyter+Spark代码。4. 求1000以内水仙花数(3位数)。2. python 打印99乘法表?

2025-03-13 18:58:12 300

原创 辅助分类器生成对抗网络( Auxiliary Classifier Generative Adversarial Network,ACGAN)(附pytorch代码)

ACGAN相对于CGAN使的判别器不仅可以判别真假,也可以判别类别 。通过对生成数据类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布。

2024-07-24 09:13:34 1736 1

原创 Aquila优化算法(基本原理+matlab源代码)—— 基于Aquila Optimizer原始论文分析

AO是一种基于种群优化方法,受启发于Aquila捕获猎物的方式。Aquila捕获猎物的方式主要有四种:(1)有垂直弯曲的高空翱翔(2)用短滑翔攻击的轮廓飞行(3)带缓慢下降的低空飞行(4)走和抓取猎物

2024-07-22 16:35:56 1487

原创 蒙特卡洛模拟

是一种随机模拟方法,如果我们所求解的问题与概率模型存在一定的关系,我们便可以借助计算机多次模拟事件的发生,以获得问题的近似解。因此,蒙特卡罗模拟不能说是一种方法,而是一种思想,我们需要针对不同的问题我们要设计不同的代码。

2024-07-19 21:12:55 460

原创 遗传算法(Genetic Algorithm)

遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

2024-07-19 20:57:24 1628

原创 粒子群优化算法(Particle Swarm Optimization, PSO)

粒子群优化算法(PSO, Particle Swarm Optimization),属于启发式算法中的一种,常用于多目标优化,寻找全局最优解,具有收敛速度快、参数少、算法简单的优点。

2024-07-19 19:52:33 1284

原创 图书管理系统——C语言课程设计(代码)

项目思路清晰,C语言编写规范,如果需要请。开发环境:Dev C++

2024-07-19 15:58:50 310

原创 使用C#实现无人超市管理系统——数据结构课设(代码+PPT+说明书)

基于课题的要求,采用线性表来进行本次系统程序的设计。线性表包含顺序表和链表,基于链表方便进行添加、删除、插入等性质,本次系统程序设计采用链表存储。链表分为两条线,分别是存储用户信息和商品信息,并且都设为公共属性,方便对用户信息和商品信息的更改,并实现快速同步。

2024-07-19 15:49:58 959

原创 强化学习(Reinforcement Learning , RL)

强化学习模仿了生物体通过与环境交互来学习最优行为的过程,这种交互与日常生活中的各种“绩效奖励”非常类似。

2024-07-19 13:27:45 439

原创 One-Class SVM

它只有一个类,然后识别的结果就是:“是”或者“不是”这个类。这听起来和2分类问题貌似一样,它们的区别在于,在2分类问题中,训练集中有2个类,通常称为正例和负例,而在one class classification中,就。:通过最大化超平面与正常数据之间的间隔(如图2 所示),寻找一个最优的分割超平面,使得异常点尽可能远离该超平面。:对于新的数据点,通过计算其与超平面的距离,来判断该数据点是否为异常。找一个超平面将样本中的正例圈出来,预测就是用这个超平面做决策,在圈内的样本就认为是正样本,如图1所示。

2024-07-18 16:15:47 660

原创 支持向量机(SVM)

支持向量机(Support Vector Machine:SVM)的目的是用训练数据集的间隔最大化找到一个最优分离超平面。这里面有两个概念间隔最大化和最优分离超平面。

2024-07-18 15:39:19 1177

原创 拉格朗日乘子法和KKT条件

拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 KKT 条件。当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件。

2024-07-18 13:49:52 631

原创 最大均值差异(Maximum Mean Discrepancy (MMD))

最大均值差异是用来衡量两个分布之间的差异,广泛应用于域适应、生成对抗网络(GANs)等场景。——MMD评价两堆数据是否具有相似性。寻找一个"well-behaved"函数f:x——>R∈F,使得下面的目标最大:函数f将分布P和Q中的所有样本映射成一个实数,遍历函数空间F中所有的函数,将这两堆实数的均值差最大值用于衡量分布的差异。如果P=Q,则对于任意的f,都有,故最大差异R=0。如果P和Q很相似,则可能存在很多f使得,因此这些f并不能客观反映出P和Q之间的差异,所以需要选择一个合适的f,使得两个分布最不相似

2024-07-17 21:42:46 1620

原创 泛化能力(Model generalization)

学习到的模型对未知数据的预测能力,这个未见过的测试数据必须是和训练数据处于同一分布,不在同一分布的数据是不符合独立同分布假设的(对同一规律不同的数据集的预测能力)。通常通过测试误差来评价学习方法的泛化能力。就是通过数据训练学习的模型,拿到真实场景去试,这个模型到底行不行,如果达到了一定的要求和标准,它就是行,说明泛化能力好,如果表现很差,说明泛化能力差。机器学习-泛化能力-CSDN博客。

2024-07-17 12:06:50 375

原创 F1-score(标准度量)

F1分数(F1-score)是分类问题的一个衡量指标。一些多分类问题的机器学习竞赛,常常将F1-score作为最终测评的方法。它是精确率和召回率的调和平均数,最大为1,最小为0,如公式1所示。公式1。

2024-07-17 11:00:54 2234

原创 利用联邦学习和基于自动编码器模型的分布式学习架构

首先,在每个训练回合中,随机选择一个客户子集𝑚 = 𝑚𝑎𝑥(𝐶×𝐾, 1)参加当前回合,使得 C 是被选中参与的客户的比例;其次,每个客户端接收全局模型,并使用其本地数据D进行本地迭代对其进行优化。优化是使用小批量梯度下降技术完成;最后,重复这些步骤,直到我们达到收敛。整体的架构如图1所示。然后,一旦训练完成,客户端将本地权重。该步骤可以参考中心化联邦学习,

2024-07-16 20:09:10 374

原创 对抗自动编码器(AAE)

如图1所示为AAE的结构图,其中 p(z) 是我们想要施加给 z 的先验分布,q(z) 是潜在变量的分布。图1的上半部分是一个标准的自动编码器,发挥着生成器的作用。图1的下把那部分是判别器𝐷𝜒 (𝑧),用于预测数据是编码器生成的假数据z,还是预先得知数据z'。学习如何区分真实样本(从前验样本中抽取)和虚假样本(由编码器生成)。,仅对编码器和解码器的参数进行优化,以最小化输入的重建损失,而在。训练过程分为重建阶段和正则化阶段两个过程。,同时训练判别器和生成器(编码器)。然后,对判别器进行固定,并训练。

2024-07-16 19:13:12 802

原创 变分编码器(VAE)

变分编码器将输入向量x映射到均值μ和标准差σ的正态分布中,并从中对潜在向量 Z 进行采样。

2024-07-16 16:42:21 234

原创 联邦学习(Federated learning)—— 去中心化联邦&中心化联邦

需要将本地模型参数加密传输给其余参与联合训练的数据持有方。因此,假设本次联合训练有n个参与方,则每个参与方至少需要传输2(n-1)次加密模型参数。中央服务器先将初始模型分发给各参与方,然后各参与方根据本地数据集分别对所得模型进行训练。:基于分布在多个设备上的数据集构建机器学习模型,同时防止数据泄露。各参与方将本地训练得到的模型参数加密上传至中央服务器。,因为难以从多家企业中选出进行协调的服务器方。,企业作为服务器,起着协调全局模型的作用;进行模型训练的场景,一般可以采用。的联邦学习场景,一般采用的是。

2024-07-16 08:58:00 3139

原创 先验概率 & 后验概率 & 最大似然估计 & 自编码器AE

贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A),其中P(B|A)为后验概率,P(A|B)为先验概率。,这部分称为Encoder,可用函数 h=f(x) 表示,然后再利用Decoder将code重构成为。,根据一些发生的事实,分析结果最可能产生的原因,然后才能有针对性地去解决问题。是一种特定的神经网络结构,其目的是为了将输入信息映射到某个更低维度的空间,生成。作用:后验概率是比较难以计算的,我们通常使用。:执果寻因中的因(条件概率),用函数 r=g(h)。由先验概率计算后验概率。

2024-07-16 08:23:11 358

原创 pixelRNN与pixelCNN

训练这个RNN时,一次前向传播需要从左上到右下串行走一遍,然后根据上面的公式求出似然,并。公式解释:p(x)是每个图像x的概率;右侧为第i个像素在1至i-1像素条件下的条件概率。——》效率低——》CNN代替RNN来构建未知像素的分布律——》使用一个CNN来接收之前的所有像素,并预测下一个像素的出现概率。以对参数做一轮更新。(像素值是逐个构建和更新的)目的:为了找到一个最能解释得到的生成样本的模型。实际应用阶段生成图像的速度是很慢的。,也就是每个通道生成概率的乘积。我们需要利用概率链式法则将。

2024-07-15 22:21:03 398

原创 数字图像处理——数据和可视化(持续更新)

/ 高、宽的取值范围都是[0, 1],而左下角为(0,0)坐标。不会覆盖上一图形,允许在上一图形的坐标轴上添加新的图形。为对应的图添加标题,只需要写到绘制图的后面即可。将会清除原来坐标轴上的图形,重新绘制新的图形。:使(m*n)幅子图中第k个子图成为当前图。:在指定的位置上开辟子图,并成为当前图。

2024-07-15 16:27:41 331

原创 AI安全系列——[第五空间 2022]AI(持续更新)

最近很长时间没有更新,其实一直在学习AI安全,我原以为学完深度学习之后再学AI安全会更加简单些,但是事实证明理论转实践还是挺困难的,但是请你一定要坚持下去,因为“不是所有的坚持都有结果,但总有一些坚持,能从冰封的土地里,培育出十万朵怒放的蔷薇”题目来源:NSSCTF题目描述:噪声在大数据场景下有着重要的地位。工程师们苦于被噪声污染的数据,同时也使用噪声保护着隐私数据。这个挑战分为两个部分。挑战1:从噪声中恢复隐私向量有A,B两个实体。其中B是普通实体,A则是恶意攻击者。

2024-07-15 16:27:13 1407

原创 如何在maven工程里面添加Oracle版本依赖?如何在idea的xml文件中配置Oracle依赖?

命令解释:mvn install:install-file -Dfile="jar包的绝对路径" -Dpackaging="文件打包方式" -DgroupId=groupid名 -DartifactId=artifactId名 -Dversion=jar版本(在上面查到的) (artifactId名对应之后maven配置的依赖名)Oracle的jar包文件地址:E:\Oracle\ojdbc14.jar。查看了安装信息,安装到了C盘的maven依赖目录。也许将安装到C盘的转到E盘就好了。

2024-07-02 19:54:08 692

原创 在Springboot项目中使用七牛云文件上传失败

首先说明一下,使用postman上传文件是没有问题的,但是在前端上传文件的时候就会出现上传失败的结果。把这条信息注释了就可以实现上传成功。

2024-06-26 09:49:45 263

原创 在postman请求登陆的时候出现没有权限问题

你将token去掉就没事了。

2024-06-24 21:45:39 1143

原创 使用postman时,出现报错CannotGetJdbcConnectionException: Failed to obtain JDBC Connection

原因:数据库密码配置出错。

2024-06-24 21:11:16 323

原创 如何使用idea连接Oracle数据库?

Oracle版本:10.2.0.1.0(在虚拟机Windows sever 2003 远程连接数据库)在idea里面找到database,在idea侧面。数据库管理系统:PLSQL Developer。选择左上角加号,新建,选择Oracle数据库。idea版本:2021.3.3。进行如下配置,点击测试。

2024-06-21 19:28:23 1800

原创 在maven中添加Oracle依赖的时候下载成功,但是还是会有红色的波浪线,如何解决?

但是,我执行之后还是报错,网上并没有找到相应的教程,想到之前配置maven的时候自定义了依赖下载的地址,想着应该是这个原因,把自定义地址改为默认,再按照上面的步骤就成功了。Oracle版本:10.2.0.1.0(在Windows server 2003中,远程连接)这些问题都没有错,但是,应该在ojdbc14.jar所在的文件夹中执行。maven版本:3.6.3。

2024-06-21 17:26:50 329

Java面向程序设计期末机考练习题以及答案

Java面向程序设计期末机考练习题以及答案

2024-08-06

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除