- 博客(7)
- 收藏
- 关注
原创 英伟达GPU服务器训练前环境sop检查
摘要:本文详细介绍了N卡GPU服务器在AI模型训练前的系统性环境检查SOP,涵盖硬件状态、驱动与CUDA环境、深度学习框架依赖及性能基准测试等关键环节。重点包括:1)通过nvidia-smi检查GPU状态、拓扑和NVLINK连接;2)确认IB网卡名称与状态,确保NUMA平衡;3)设置GPU主频和CPU性能模式;4)验证RDMA网络性能;5)使用nccl-tests进行多机通信测试。通过这套标准化检查流程,可有效规避环境问题导致的训练中断或性能损失,为AI训练提供稳定可靠的硬件基础。
2025-10-30 12:30:28
777
原创 算力采购避坑宝典:Beyond the Specs- 深度考察GPU算力供应商的终极清单
1. 当我方在使用 A800/A100/H100 算力过程中遇到技术问题(如算力性能不达标、兼容性问题),贵方技术支持团队的响应时间是多久?4. 针对我方可能提出的特殊技术需求(如定制化算力调度策略、性能优化),贵方可提供的技术解决方案流程是什么?1. 典型客户案例 提供3个以上使用A800/A100/H100的客户案例,包括客户名称、使用场景、规模、时长。无论您是即将进行供应商考察,还是希望构建内部的评估体系,这份源于一线实战的清单,都将助您拨开营销迷雾,做出最明智的采购决策。
2025-10-27 11:23:55
942
原创 数据中心GPU芯片性能参数速查表(Nvidia+国产算力卡)
Nvidia的数据中心用GPU芯片,不断更新迭代新的架构。不同架构下的 GPU芯片,其性能参数大相径庭。在计算能力方面,从早期架构到如今的先进架构,CUDA 核心数量不断增加,如从 Kepler 架构开始,SM 单元中的 CUDA 核心数大幅提升,这使得通用计算能力得到极大增强。每代的架构,都会以一个著名科学家的名字命名,截止目前,已经有 11 款芯片架构代号取自科学家名字。如下所示:
2025-06-04 17:49:30
6177
2
原创 使用国内 huggingface 镜像下载模型数据集方法
Hugging Face作为全球知名的AI模型和数据集共享平台,拥有海量的资源可供开发者使用。然而,由于网络环境等因素的影响,国内开发者在直接访问Hugging Face官网下载模型和数据集时,往往会遇到速度慢甚至无法下载的问题。为了帮助国内AI开发者解决这一难题,Hugging Face的国内镜像站点应运而生。这些镜像站点通过在国内部署服务器,加速了模型和数据集的下载速度,极大地提高了开发效率。
2025-05-27 11:32:59
2246
原创 Infiniband写入带宽对RDMA网络的基准测试方法
通过RDMA网络读写速率测试,可以为应用开发者提供准确的网络性能数据,帮助他们更好地理解网络的瓶颈和优势,从而有针对性地优化应用的通信逻辑,提高应用的整体性能和效率。
2025-04-29 17:35:16
1281
原创 GPU集群计算IB网卡命名不一致修改
在使用不同厂家的服务器做集群训练时,因为不同厂家的GPU服务器配置不同会影响计算网的通信,以下图为例:mlx5_6网卡在A机器上为25GE网卡,在B机器上为200G的IB网卡,在添加NCCL通信相关配置时,如果没有统一命名,会因为网卡名称导致通信报错。修改 KERNELS==“0000:” 的值,参考smt status -v中的 PCI值对应的NET网卡,保存后reboot。3.ibdev2netdev 查看命名,已经修改成功。下查看PCIE对应的NUMA关系。
2025-04-29 16:37:33
592
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅